An Improved Cluster Oriented Fuzzy Decision Trees | SpringerLink
Skip to main content

An Improved Cluster Oriented Fuzzy Decision Trees

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5908))

  • 1530 Accesses

Abstract

In this paper, an improved cluster oriented decision trees algorithm shortly named ICFDT is presented. In this algorithm, fuzzy C-means clustering algorithm (FCM) without instance labels is used to split the nodes and two novel node expanding criteria are proposed. One criterion uses the ratio of homogenous samples in the node to split; the other splits the node by membership degree without labels. The experimental results in artificial and machine learning datasets show that our method can achieve better performance comparing to standard decision tree named C4.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tom, M.: Mitchell: Machine Learning, pp. 38–56. China Machine Press, Beijing (2003)

    Google Scholar 

  2. Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  3. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Belmont, Wadsworth (1984)

    MATH  Google Scholar 

  5. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  6. Weber, R.: Fuzzy ID3: A class of methods for automatic knowledge acquisition. In: Proc. 2nd Internet. Conf. on Fuzzy Logic Neural Networks, Iizuka, Japan, July 17-22, pp. 265–268 (1992)

    Google Scholar 

  7. Yuan, Y., Shaw, M.J.: Introduction of Fuzzy Decision Trees. Fuzzy Set and Systems 69, 125–139 (1995)

    Article  MathSciNet  Google Scholar 

  8. Pedrycz, W., Sonsnowski, Z.A.: Designing Decision Trees with the Use of Fuzzy Granulation. IEEE Trans. Syst., Man, Cybern. A, Syst., Humans 30(2), 151–159 (2000)

    Article  Google Scholar 

  9. Pedrycz, W., Sonsnowski, Z.A.: C-Fuzzy Decision Trees. IEEE Trans. Syst., Man, Cybern. C, Applications and Reviews 35(4), 498–511 (2005)

    Article  Google Scholar 

  10. Yang, S.-B., Chang, C.-C.: New C-Fuzzy Decision Tree with Classified Points. Journal of Electronic Imaging 17(3), 017–033 (2008)

    Google Scholar 

  11. Makkithaya, K., Subba Reddy, N.V., Dinesh Acharya, U.: Improved C-Fuzzy Decision Tree for Intrusion Detection. In: Proceedings and World Academy of Science, Engineering and Technology, vol. 32 (2008) ISSN 2070-3740

    Google Scholar 

  12. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms, pp. 13–93. Plenum, New York (1981)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Su, S., Wang, X., Zhai, J. (2009). An Improved Cluster Oriented Fuzzy Decision Trees. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2009. Lecture Notes in Computer Science(), vol 5908. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10646-0_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10646-0_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10645-3

  • Online ISBN: 978-3-642-10646-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics