A Fuzzy Random Variable Approach to Restructuring of Rough Sets through Statistical Test | SpringerLink
Skip to main content

A Fuzzy Random Variable Approach to Restructuring of Rough Sets through Statistical Test

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5908))

  • 1515 Accesses

Abstract

Usually it is hard to classify the situation where randomness and fuzziness exist simultaneously. This paper presents a method based on fuzzy random variables and statistical t-test to restructure a rough set. The algorithms of rough set and statistical t-test are used to distinguish whether a subset can be classified in the object set or not. The expected-value-approach is also applied to calculate the fuzzy value with probability into a scalar value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liu, Y.-K., Liu, B.: Fuzzy random variable: A scalar expected value operator. Fuzzy Optimization and Decision Making 2(2), 143–160 (2003)

    Article  MathSciNet  Google Scholar 

  2. Liu, B.: Uncertainty Theory, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  3. Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value models. IEEE Transaction on Fuzzy Systems 10, 445–450 (2002)

    Article  Google Scholar 

  4. Liu, Y.K., Liu, B.: Fuzzy random variable: A scalar expected value operator. Fuzzy Optimization and Decision Making 2, 143–160 (2003)

    Article  MathSciNet  Google Scholar 

  5. Liu, Y.K., Liu, B.: On minimum-risk problems in fuzzy random decision systems. Computers & Operations Research 32, 257–283 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Nahmias, S.: Fuzzy variables. Fuzzy Sets and Systems 1(2), 97–111 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  7. Wang, S., Watada, J.: T-independence condition for fuzzy random vector based on continuous triangular norms. Journal of Uncertain Systems 2, 155–160 (2008)

    Google Scholar 

  8. Wang, S., Watada, J.: Studying distribution functions of fuzzy random variables and its applications to critical value functions. International Journal of Innovative Computing, Information & Control 5, 279–292 (2009)

    Google Scholar 

  9. Watada, J., Wang, S.: Regression model based on fuzzy random variables. In: Rodulf, S. (ed.) Views on Fuzzy Sets and Systems from Different Perspectives, ch. 26. Springer, Berlin (2009)

    Google Scholar 

  10. Watada, J., Wang, S., Pedrycz, W.: Building confidence-interval-based fuzzy random regression models. In: IEEE Transactions on Fuzzy Systems (to be published)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Watada, J., Lin, LC., Qiang, M., Lin, PC. (2009). A Fuzzy Random Variable Approach to Restructuring of Rough Sets through Statistical Test. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2009. Lecture Notes in Computer Science(), vol 5908. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10646-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10646-0_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10645-3

  • Online ISBN: 978-3-642-10646-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics