New Approach in Defining Rough Approximations | SpringerLink
Skip to main content

New Approach in Defining Rough Approximations

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5908))

Abstract

In this paper, we discuss some structures on the ordered set of rough approximations in a more general setting of complete atomic Boolean lattices. Further, we define an induced map from the map defined from the atoms of complete atomic Boolean lattice (\(\mathcal A\)(B)) to that lattice B. We also study the connections between the rough approximations x  ∨ , x  ∧ . defined with respect to the induced map and the rough approximations \(x^\blacktriangledown, x^\blacktriangle\)..defined with respect to the considered map under certain conditions on the map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allam, A.A., Bakeir, M.Y., Abo-Tabl, E.A.: New approach for Basic Rough set Concepts. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 64–73. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Allam, A.A., Bakeir, M.Y., Abo-Tabl, E.A.: Some Methods for Generating Topologies by Relations. Bull. Malays. Math. Sci. Soc. 31(2,1), 35–45 (2008)

    MATH  MathSciNet  Google Scholar 

  3. Bakhir, M.Y.: On Pre-Granulation (2008) (preprint)

    Google Scholar 

  4. Degang, C.: Rough approximations on a complete completely distributive lattice with applications to generalized rough sets. Information Sciences 176, 1829–1848 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gehrke, M., Walker, E.: On the Structure of Rough Sets. Bulletin of the Polish academy of sciences Mathematics 40, 235–245 (1992)

    MATH  MathSciNet  Google Scholar 

  6. Gratzer, G.: General Lattice Theory. Academic Press, New York (1978)

    Google Scholar 

  7. Jarvinen, J.: On the Structure of Rough Approximations. Fundamenta Informaticae 53, 135–153 (2002)

    MathSciNet  Google Scholar 

  8. Jarvinen, J., Kondo, M., Kortelainen, J.: Modal-Like Operators in Boolean Lattices, Galois Connections and Fixed Points. Fundamenta Informaticae 76, 129–145 (2007)

    MathSciNet  Google Scholar 

  9. Kalmbach, G.: Orthomodular Lattices. Academic Press Inc., London (1983)

    MATH  Google Scholar 

  10. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences 5, 341–356 (1982)

    Article  MathSciNet  Google Scholar 

  11. Slowinski, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Transactions on Knowledge and Data Engineering 12(2), 331–336 (2000)

    Article  Google Scholar 

  12. Szasz, G.: Introduction to Lattice Theory. Academic Press Inc., London (1963)

    Google Scholar 

  13. Zhu, W.: Generalized rough sets based on relations. Information Sciences 177(22), 4997–5011 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yao, Y.Y.: Two views of the theory of rough sets in finite universes. International Journal of Approximation Reasoning 15, 291–317 (1996)

    Article  MATH  Google Scholar 

  15. Yao, Y.Y.: Relational Interpretations of Neighborhood Operators and Rough Set Approximation Operators. Information Sciences 111(1-4), 239–259 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Yao, Y.Y.: Constructive and algebraic methods of the theory of rough sets. Information Sciences 109(1-4), 21–47 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yao, Y.Y.: On generalizing Pawlak approximation operators. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 298–307. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nagarajan, E.K.R., Umadevi, D. (2009). New Approach in Defining Rough Approximations. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2009. Lecture Notes in Computer Science(), vol 5908. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10646-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10646-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10645-3

  • Online ISBN: 978-3-642-10646-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics