Learning Higher-Order Markov Models for Object Tracking in Image Sequences | SpringerLink
Skip to main content

Learning Higher-Order Markov Models for Object Tracking in Image Sequences

  • Conference paper
Advances in Visual Computing (ISVC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5876))

Included in the following conference series:

  • 2630 Accesses

Abstract

This work presents a novel object tracking approach, where the motion model is learned from sets of frame-wise detections with unknown associations. We employ a higher-order Markov model on position space instead of a first-order Markov model on a high-dimensional state-space of object dynamics. Compared to the latter, our approach allows the use of marginal rather than joint distributions, which results in a significant reduction of computation complexity. Densities are represented using a grid-based approach, where the rectangular windows are replaced with estimated smooth Parzen windows sampled at the grid points. This method performs as accurately as particle filter methods with the additional advantage that the prediction and update steps can be learned from empirical data. Our method is compared against standard techniques on image sequences obtained from an RC car following scenario. We show that our approach performs best in most of the sequences. Other potential applications are surveillance from cheap or uncalibrated cameras and image sequence analysis.

The research leading to these results has received funding from the European Community’s 7th Framework Programme (FP7/2007-2013) under grant agreement n° 215078 DIPLECS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Felsberg, M., Larsson, F.: Learning Bayesian tracking for motion estimation. In: International Workshop on Machine Learning for Vision-based Motion Analysis (2008)

    Google Scholar 

  2. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Sig. P. 50, 174–188 (2002)

    Article  Google Scholar 

  3. Isard, M., Blake, A.: CONDENSATION – conditional density propagation for visual tracking. International Journal of Computer Vision 29, 5–28 (1998)

    Article  Google Scholar 

  4. Coué, C., Fraichard, T., Bessière, P., Mazer, E.: Using Bayesian programming for multi-sensor multitarget tracking in automotive applications. In: ICRA (2003)

    Google Scholar 

  5. Granlund, G.H.: An Associative Perception-Action Structure Using a Localized Space Variant Information Representation. In: Proceedings of the AFPAC Workshop (2000)

    Google Scholar 

  6. Johansson, B., et al.: The application of an oblique-projected landweber method to a model of supervised learning. Mathematical and Computer Modelling 43, 892–909 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jonsson, E., Felsberg, M.: Correspondence-free associative learning. In: ICPR (2006)

    Google Scholar 

  8. Felsberg, M., Forssén, P.E., Scharr, H.: Channel smoothing: Efficient robust smoothing of low-level signal features. PAMI 28, 209–222 (2006)

    Google Scholar 

  9. Georgiev, A.A.: Nonparamtetric system identification by kernel methods. IEEE Trans. on Automatic Control 29 (1984)

    Google Scholar 

  10. Han, B., Joo, S.W., Davis, L.S.: Probabilistic fusion tracking using mixture kernel-based Bayesian filtering. In: IEEE Int. Conf. on Computer Vision (2007)

    Google Scholar 

  11. North, B., Blake, A.: Learning dynamical models using expectation-maximisation. In: ICCV 1998 (1998)

    Google Scholar 

  12. Ardö, H., Åström, K., Berthilsson, R.: Real time viterbi optimization of hidden markov models for multi target tracking. In: Proceedings of the WMVC (2007)

    Google Scholar 

  13. Streit, R.L., Luginbuhl, T.E.: Probabilistic multi-hypothesis tracking. Technical report, 10, NUWC-NPT (1995)

    Google Scholar 

  14. Shalom, B.Y., Tse, E.: Tracking in a cluttered environment with probabilistic data association. Automatica 11, 451–460 (1975)

    Article  MATH  Google Scholar 

  15. Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Analysis and Machine Intell. 22, 747–757 (2000)

    Article  Google Scholar 

  16. Jonker, R., Volgenant, A.: A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38, 325–340 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Snippe, H.P., Koenderink, J.J.: Discrimination thresholds for channel-coded systems. Biological Cybernetics 66, 543–551 (1992)

    Article  MATH  Google Scholar 

  18. Pampalk, E., Rauber, A., Merkl, D.: Using Smoothed Data Histograms for Cluster Visualization in Self-Organizing Maps. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 871–876. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Forssén, P.E.: Low and Medium Level Vision using Channel Representations. PhD thesis, Linköping University, Sweden (2004)

    Google Scholar 

  20. Felsberg, M.: Spatio-featural scale-space. In: Tai, X.-C., et al. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 235–246. Springer, Heidelberg (2009)

    Google Scholar 

  21. Yakowitz, S.J.: Nonparametric density estimation, prediction, and regression for markov sequences. Journal of the American Statistical Association 80 (1985)

    Google Scholar 

  22. Baum, L.E., et al.: A maximization technique occuring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat. 41, 164–171 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rao, R.P.N.: An optimal estimation approach to visual perception and learning. Vision Research 39, 1963–1989 (1999)

    Article  Google Scholar 

  24. Therrien, C.W.: Decision, estimation, and classification: an introduction into pattern recognition and related topics. John Wiley & Sons, Inc., Chichester (1989)

    Google Scholar 

  25. Sochman, J., Matas, J.: Waldboost - learning for time constrained sequential detection. In: Proc. Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 150–157 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Felsberg, M., Larsson, F. (2009). Learning Higher-Order Markov Models for Object Tracking in Image Sequences. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10520-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10520-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10519-7

  • Online ISBN: 978-3-642-10520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics