Multi-objective Optimization for Information Sharing in Vehicular Ad Hoc Networks | SpringerLink
Skip to main content

Multi-objective Optimization for Information Sharing in Vehicular Ad Hoc Networks

  • Conference paper
Advances in Information Technology (IAIT 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 55))

Included in the following conference series:

  • 505 Accesses

Abstract

Satellites to car multimedia content delivery systems, such as KU Mobile, are a promising area for research and development. With vehicles becoming more computational and communicative, the demand for bringing multimedia and information technology services into vehicles is raising. However, these systems suffer from significant signal fading and incomplete reception caused by obstacles along the road interrupting the mandatory line of sight between satellite and car while these two are communicating. Therefore, additional technologies need to be specifically designed to complete partially received information in such scenarios. In this paper we propose xChangeMobile, an inter-vehicular ad-hoc wireless network (VANET) content exchange system. It is composed by two novel communication protocols, VanetDFCN and ChunkXChange, designed specifically for this scenario. Finally, using multi-objective genetic algorithms, we optimized the main parameters of proposed protocols to achieve the best communication performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. CALM, Continuous communication for vehicles: http://www.calm.hu/ (last accessed in May 2008)

  2. Car to car communication consortium: http://www.car-to-car.org/ (last accessed in May 2008)

  3. The KU Mobile project: http://telecom.esa.int/telecom/www/object/index.cfm?fobjectid=13103 (last accessed in May 2008)

  4. KU Mobile specification documentation, Ses-astra internal documentation (2008)

    Google Scholar 

  5. Evans, B., Thomson, P.: Aspects of satellite delivered mobile TV (SDMB). In: 16th IST Mobile and Wireless Communications Summit, pp. 1–5. IEEE Press, Los Alamitos (2007)

    Chapter  Google Scholar 

  6. Hogie, L., Seredynski, M., Guinand, F., Bouvry, P.: A bandwidth-efficient broadcasting protocol for mobile multi-hop ad hoc networks. In: International Conference on Networking (ICN), p. 71. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  7. Coello, C., Van Veldhuizen, D., Lamont, G.: Evolutionary Algorithms for Solving Multi-Objective Problems. In: Genetic Algorithms and Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  8. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  9. Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms. In: Operations Research/Compuer Science Interfaces. Springer, Heidelberg (2008)

    Google Scholar 

  10. Whitley, D.: Cellular genetic algorithms. In: Forrest, S. (ed.) Fifth International Conference on Genetic Algorithms (ICGA), p. 658. Morgan Kaufmann, California (1993)

    Google Scholar 

  11. Manderick, B., Spiessens, P.: Fine-grained parallel genetic algorithm. In: Schaffer, J. (ed.) Third International Conference on Genetic Algorithms, pp. 428–433. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  12. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Transactions on Evolutionary Computation 6(5), 443–462 (2002)

    Article  Google Scholar 

  13. Alba, E., Dorronsoro, B., Giacobini, M., Tomassini, M.: Decentralized Cellular Evolutionary Algorithms. In: Handbook of Bioinspired Algorithms and Applications, ch. 7, pp. 103–120. CRC Press, Boca Raton (2006)

    Google Scholar 

  14. Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: Mocell: A cellular genetic algorithm for multiobjective optimization. International Journal of Intelligent Systems 24(7), 726–746 (2009)

    Article  MATH  Google Scholar 

  15. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  16. Hogie, L., Guinand, F., Bouvry, P.: The Madhoc Metropolitan Adhoc Network Simulator. Université du Luxembourg and Université du Havre, France (2006), http://www-lih.univ-lehavre.fr/~hogie/madhoc/

  17. Alba, E., Dorronsoro, B., Luna, F., Nebro, A., Bouvry, P., Hogie, L.: A cellular multi-objective genetic algorithm for optimal broadcasting strategy in metropolitan MANETs. Computer Communications 30(4), 685–697 (2007)

    Article  Google Scholar 

  18. Luna, F., Nebro, A., Dorronsoro, B., Alba, E., Bouvry, P., Hogie, L.: Optimal broadcasting in metropolitan MANETs using multiobjective scatter search. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 255–266. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Günter, Y., Grobmann, H.: Usage of wireless LAN for inter-vehicle communication. In: Proc. of the 8th IEEE International Intelligent Transportation Systems, pp. 408–413. IEEE, Los Alamitos (2005)

    Google Scholar 

  20. Durillo, J., Nebro, A., Luna, F., Dorronsoro, B., Alba, E.: jMetal: A java framework for developing multiobjective optimization metaheuristics. Technical Report ITI-2006-10, Dpto. de Lenguajes y CC.CC., Universidad de Málaga (2006)

    Google Scholar 

  21. Durillo, J.: : The jMetal framework, http://neo.lcc.uma.es/software/metal (last accessed in May 2008)

  22. Nebro, A., Durillo, J., Luna, F., Dorronsoro, B., Alba, E.: A study of strategies for neigborhood replacement and archive feedback in a multiobjective cellular genetic algorithm. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 126–140. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Danoy, G., Dorronsoro, B., Bouvry, P., Reljic, B., Zimmer, F. (2009). Multi-objective Optimization for Information Sharing in Vehicular Ad Hoc Networks. In: Papasratorn, B., Chutimaskul, W., Porkaew, K., Vanijja, V. (eds) Advances in Information Technology. IAIT 2009. Communications in Computer and Information Science, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10392-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10392-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10391-9

  • Online ISBN: 978-3-642-10392-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics