Abstract
We present an extension of the low complexity Description Logic \(\mathcal{EL}^{+^\bot}\) for reasoning about prototypical properties and inheritance with exceptions. We add to \(\mathcal{EL}^{+^\bot}\) a typicality operator T, which is intended to select the “most normal” instances of a concept. In the resulting logic, called \(\mathcal{EL}^{+^\bot}{\bf T}\), the knowledge base may contain subsumption relations of the form “T(C) is subsumed by P”, expressing that typical C-members have the property P. We show that the problem of entailment in \(\mathcal{EL}^{+^\bot}{\bf T}\) is in co-NP by proving a small model result.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: LTCS-Report LTCS-05-01, Inst. for Theoretical Compute Science, TU Dresden (2005), http://lat.inf.tudresden.de/research/reports.html
Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Proc. of IJCAI 2005, Professional Book Center, pp. 364–369 (2005)
Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge representation formalisms. J. Autom. Reasoning 14(1), 149–180 (1995)
Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their application in treating specificity in terminological default logic. J. of Automated Reasoning (JAR) 15(1), 41–68 (1995)
Bonatti, P., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity dls: Preliminary notes. In: Proc. of IJCAI 2009 (2009)
Bonatti, P.A., Lutz, C., Wolter, F.: Description logics with circumscription. In: Proc. of KR, pp. 400–410 (2006)
Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation as failure. ACM Trans. Comput. Log. 3(2), 177–225 (2002)
Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. In: KR 2004, pp. 141–151 (2004)
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Preferential Description Logics. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 257–272. Springer, Heidelberg (2007)
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning About Typicality in Preferential Description Logics. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 192–205. Springer, Heidelberg (2008)
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: On Extending Description Logics for Reasoning About Typicality: a First Step. Technical Report 116/09, Dip. di Informatica, Univ. di Torino (2009)
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Prototypical reasoning with low complexity Description Logics: Preliminary results. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI), vol. 5753, pp. 430–436. Springer, Heidelberg (2009)
Ke, P., Sattler, U.: Next Steps for Description Logics of Minimal Knowledge and Negation as Failure. In: DL 2008 (2008)
Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)
Straccia, U.: Default inheritance reasoning in hybrid kl-one-style logics. In: Proc. of IJCAI, pp. 676–681 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L. (2009). Reasoning about Typicality with Low Complexity Description Logics: The Logic \(\mathcal{EL}^{+^\bot}{\bf T}\) . In: Serra, R., Cucchiara, R. (eds) AI*IA 2009: Emergent Perspectives in Artificial Intelligence. AI*IA 2009. Lecture Notes in Computer Science(), vol 5883. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10291-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-10291-2_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10290-5
Online ISBN: 978-3-642-10291-2
eBook Packages: Computer ScienceComputer Science (R0)