Abstract
Diffusion weighted magnetic resonance imaging is widely used in the study of the structure of the fiber pathways in brain white matter. In this work we present a new method for denoising intra–voxel axon fiber tracks. In order to improve local (voxelwise) estimations, we use the general–purpose segmentation method called Entropy–Controlled Quadratic Markov Measure Field Models. Our proposal is capable of spatially–regularize multiple axon fiber orientations (intra-voxel orientations). In order to provide the best as possible local axon orientations to our spatial regularization procedure, we evaluate two optimization methods for fitting a Diffusion Basis Function model. We present qualitative results on real human Diffusion Weighted MRI data where the ground–truth is not available, and we quantitatively validate our results by synthetic experiments.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994)
Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. B 111, 209–219 (1996)
Buxton, R.: Introduction to Functional Magnetic Resonance Imaging Principles and Techniques. Cambridge University Press, Cambridge (2002)
Poldrack, R.A.: A structural basis for developmental dyslexia: Evidence from diffusion tensor imaging. In: Wolf, M. (ed.) Dyslexia, Fluency, and the Brain, pp. 213–233. York Press (2001)
Ruiz-Alzola, J., Westin, C.F., Warfield, S.K., Nabavi, A., Kikinis, R.: Nonrigid registration of 3D scalar, vector and tensor medical data. In: Proc. MICCAI, pp. 541–550 (2000)
Gee, J.C., Alexander, D.C., Rivera, M., Duda, J.T.: Non-rigid registration of diffusion tensor MR images. In: Press, I. (ed.) Proc. IEEE ISBI, July 2002, pp. 477–480. IEEE, Los Alamitos (2002)
Zhukov, L., Museth, K., Breen, D., Whitaker, R., Barr, A.: Level set modeling and segmentation of DT-MRI brain data. J. Electronic Imaging 12, 125–133 (2003)
Wang, Z., Vemuri, B.C.: Tensor field segmentation using region based active contour model. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 304–315. Springer, Heidelberg (2004)
Wang, Z., Vemuri, B.C.: An affine invariant tensor dissimilarity measure and its applications to tensor-valued image segmentation. In: Proc. CVPR, pp. 228–233 (2004)
Wang, Z., Vemuri, B.C.: DTI segmentation using an information theoretic tensor dissimilarity measure 24(10), 1267–1277 (2005)
Lenglet, C., Rousson, M., Deriche, R., Faugeras, O.D., Lehericy, S., Ugurbil, K.: A Riemannian approach to diffusion tensor images segmentation. In: Proc. IPMI, pp. 591–602 (2005)
Lenglet, C., Rousson, M., Deriche, R.: DTIsegmentation by statistical surface evolution 25(6), 685–700 (2006)
Alexander, D.C.: An introduction to computational diffusion MRI: the diffusion tensor and beyond. In: Weickert, J., Hagen, H. (eds.) Visualization and Image Processing of Tensor Fields. Springer, Berlin (2005)
Behrens, T.E.J., Berga, H.J., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage 34(1), 144–155 (2007)
Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48(4), 577–582 (2002)
Parker, J., Alexander, D.: Probabilistic Monte Carlo based mapping of cerebral connections utilising whole-brain crossing fibre information. In: Procc. IPMI., July 2003, pp. 684–695 (2003)
Ramirez-Manzanares, A., Rivera, M., Vemuri, B.C., Carney, P., Mareci, T.: Diffusion basis functions decomposition for estimating white matter intravoxel fiber geometry. IEEE Trans. Med. Imag. 26(8), 1091–1102 (2007)
Jian, B., Vemuri, B.C.: A unified computational framework for deconvolution to reconstruct multiple fibers from diffusion weighted mri. IEEE Trans. Med. Imag. 26(11), 1464–1471 (2007)
Chen, Y., Guo, W., Zeng, Q., He, G., Vemuri, B.C., Liu, Y.: Recovery of intra-voxel structure from HARD DWI. In: Proc. IEEE ISBI, October 2004, pp. 1028–1031 (2004)
Vemuri, B.C., Chen, Y., Rao, M., McGraw, T., Wang, Z., Mareci, T.: Fiber tract mapping from diffusion tensor MRI. In: Proc IEEE Workshop VLSM, pp. 81–88 (2001)
Weickert, J.: Diffusion and regularization methods for tensor-valued images. In: Proc. First SIAM-EMS Conf. AMCW (2001)
Wang, Z., Vemuri, B.C., Chen, Y., Mareci, T.: A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from DWI. In: Proc. IPMI, vol. 18, pp. 660–671 (2003)
Wang, Z., Vemuri, B.C., Chen, Y., Mareci, T.H.: A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI 23(8), 930–939 (2004)
Tschumperlé, D., Deriche, R.: Vector-valued image regularization with PDE’s: A common framework for different applications 27(4), 506–517 (2005)
Fillard, P., Arsigny, V., Pennec, X., Ayache, N.: Clinical DT-MRI estimation, smoothing and fiber tracking with log-Euclidean metrics. In: Proc. ISBI, pp. 786–789 (2006)
Marroquín, J.L., Santana, E.A., Botello, S.: Hidden Markov measure field models for image segmentation. IEEE Trans. Pattern Anal. Machine Intell. 25(11), 1380–1387 (2003)
Rivera, M., Ocegueda, O., Marroquin, J.L.: Entropy-controlled quadratic markov measure field models for efficient image segmentation. IEEE Trans. Image Processing 16(12), 3047–3057 (2007)
Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A strategy employed by v1? Vision Research 37, 3311–3325 (1997)
Nocedal, J., Wright, S.J.: Numerical Optimization., 2nd edn. Springer Series in Operation Research (2000)
Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23, 1176–1185 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ramirez-Manzanares, A., Rivera, M., Gee, J.C. (2009). Denoising Intra-voxel Axon Fiber Orientations by Means of ECQMMF Method. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds) MICAI 2009: Advances in Artificial Intelligence. MICAI 2009. Lecture Notes in Computer Science(), vol 5845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05258-3_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-05258-3_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05257-6
Online ISBN: 978-3-642-05258-3
eBook Packages: Computer ScienceComputer Science (R0)