Abstract
Ryszard Michalski has been the pioneer of Machine Learning. His conceptual clustering focused on the understandability of clustering results. It is a key requirement if Machine Learning is to serve users successfully. In this chapter, we present two approaches to clustering in the scenario of Web 2.0 with a special concern of understandability in this new context. In contrast to semantic web approaches which advocate ontologies as a common semantics for homogeneous user groups, Web 2.0 aims at supporting heterogeneous user groups where users annotate and organize their content without a reference to a common schema. Hence, the semantics is not made explicit. It can be extracted by Machine Learning, though, hence providing users with new services.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beil, F., Ester, M., Xu, X.: Frequent term-based text clustering. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, KDD (2002)
Coello Coello, C.A.: A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowledge and Information Systems 1(3), 129–156 (1999)
Datta, S., Bhaduri, K., Giannella, C., Wolff, R., Kargupta, H.: Distributed data mining in peer-to-peer networks. IEEE Internet Computing, special issue on distributed data mining (2005)
Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, Springer, Heidelberg (2000)
Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normalized cuts. In: Proc. of the conference on Knowledge Discovery and Data Mining (2004)
Flasch, O., Kaspari, A., Morik, K., Wurst, M.: Aspect-based tagging for collaborative media organization. In: Berendt, B., Hotho, A., Mladenic, D., Semeraro, G. (eds.) WebMine 2007. LNCS (LNAI), vol. 4737, pp. 122–141. Springer, Heidelberg (2007)
Fung, B.C.M., Wang, K., Ester, M.: Hierarchical document clustering using frequent itemsets. In: Proceedings of the SIAM International Conference on Data Mining (2003)
Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large databases. In: Proc. of ACM SIGMOD International Conference on Management of Data, pp. 73–84 (1998)
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (2000)
Homburg, H., Mierswa, I., Möller, B., Morik, K., Wurst, M.: A benchmark dataset for audio classification and clustering. In: Proceedings of the International Conference on Music Information Retrieval (2005)
Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: BibSonomy: A social bookmark and publication sharing system. In: Proceedings of the Conceptual Structures Tool Interoperability Workshop at the International Conference on Conceptual Structures (2006)
Kaspari, A.: Maschinelle Lernverfahren für kollaboratives tagging. Master’s thesis, Technische Univ. Dortmund, Computer Science, LS8 (2007)
Michalski, R.S., Kaufman, K.: Intelligent evolutionary design: A new approach to optimizing complex engineering systems and its application to designing heat exchangers. International Journal of Intelligent Systems 21(12) (2006)
Michalski, R.S., Stepp, R., Diday, E.: A recent advance in data analysis: Clustering objects into classes characterized by conjunctive concepts. In: Kanal, L., Rosenfeld, A. (eds.) Progress in Pattern Recognition, pp. 33–55. North-Holland, Amsterdam (1981)
Michalski, R.S., Chilausky, R.: Knowledge acquisition by encoding expert rules versus computer induction from examples: A case study involving soybean pathology. International Journal for Man-Machine Studies (12), 63–87 (1980)
Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: Yale: Rapid prototyping for complex data mining tasks. In: Ungar, L., Craven, M., Gunopulos, D., Eliassi-Rad, T. (eds.) KDD 2006: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 935–940. ACM, New York (2006)
Morik, K.: Balanced cooperative modeling. In: Michalski, R., Tecuci, G. (eds.) Machine Learning - A Multistrategy Approach, pp. 295–318. Morgan Kaufmann, San Francisco (1994)
Ryszard, R.S., Michalski, S.: A variable decision space approach for implementing a classification system. In: Proceedings of the Second International Joint Conference on Pattern Recognition, Copenhagen, Denmark, pp. 71–75 (1974)
Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combining partitionings. In: Proceedings of the AAAI (2002)
Topchy, A.P., Jain, A.K., Punch, W.F.: Combining multiple weak clusterings. In: Proceedings of the International Conference on Data Mining, pp. 331–338 (2003)
Wang, K., Xu, C., Liu, B.: Clustering transactions using large items. In: Proceedings of the International Conference on Information and Knowledge Management (1998)
Wurst, M.: Distributed Collaborative Structuring – A Data Mining Approach to Information Management in Loosely-Coupled Domains. PhD thesis, Technische Univ. Dortmund, Computer Science, LS8 (2008)
Wurst, M., Morik, K., Mierswa, I.: Localized alternative cluster ensembles for collaborative structuring. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 485–496. Springer, Heidelberg (2006)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Morik, K., Wurst, M. (2010). Clustering the Web 2.0. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds) Advances in Machine Learning II. Studies in Computational Intelligence, vol 263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05179-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-05179-1_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05178-4
Online ISBN: 978-3-642-05179-1
eBook Packages: EngineeringEngineering (R0)