Traffic Classification Based on Flow Similarity | SpringerLink
Skip to main content

Traffic Classification Based on Flow Similarity

  • Conference paper
IP Operations and Management (IPOM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5843))

Included in the following conference series:

  • 756 Accesses

Abstract

Due to the various masquerading strategies adopted by newer P2P applications to avoid detection and filtering, well-known port mapping techniques cannot guarantee their accuracy any more. Alternative approaches, application-signature mapping, behavior-based analysis, and machine learning based classification methods, show more promising accuracy. However, these methods still have complexity issues. This paper provides a new classification method which utilizes cosine similarity between network flows.

This work was partly supported by the IT R&D program of MKE/IITA [2008-F-016-02, CASFI] and WCU program through the KSEF of MEST, Korea [R31-2008-000-10100-0].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. IANA, IANA port number list, http://www.iana.org/assignments/port-numbers/

  2. Moore, A.W., Papagiannaki, K.: Toward the Accurate Identification of Network Applications. In: Passive and Active Measurement Conference, Boston, MA, USA, March 31-April 1 (2005)

    Google Scholar 

  3. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: Multilevel Traffic Classification in the Dark. In: ACM SIGCOMM 2005, Philadelphia, PA, USA, August 21-26 (2005)

    Google Scholar 

  4. Park, B., Won, Y.J., Kim, M.-S., Hong, J.W.: Towards Automated Application Signature Generation for Traffic Identification. In: IEEE/IFIP Network Operations and Management Symposium (NOMS 2008), Salvador, Brazil, April 7-11, pp. 160–167 (2008)

    Google Scholar 

  5. Karagiannis, T., Broido, A., Brownlee, N., claffy, K., Faloutsos, M.: Is P2P Dying or just Hiding? In: IEEE Globecom 2004, Dallas, Texas, USA, November 29-December 3 (2004)

    Google Scholar 

  6. Kim, S.S., Reddy, A.L.N.: Image-Based Anomaly Detection Technique: Algorithm, Implementation and Effectiveness. IEEE Journal of Selected Areas in Communications 24, 1942–1954 (2006)

    Article  Google Scholar 

  7. Haffner, P., Sen, S., Spatscheck, O.: ACAS: Automated Construction of Application Signatures. In: ACM SIGCOMM 2005, Philadelphia, PA, USA, August 21-26 (2005)

    Google Scholar 

  8. Sen, S., Spatscheck, O., Wang, D.: Accurate, Scalable In-Network Identification of P2P Traffic using Application Signatures. In: International World Wide Web Conference, NY, USA, May 19-21, pp. 512–521 (2004)

    Google Scholar 

  9. Moore, A.W., Zeuv, D.: Internet Traffic Classification Using Bayesian Analysis Techniques. In: International Conference on Measurements and Modeling of Computer Systems, Banff, Alberta, Canada, June 6-10, pp. 50–60 (2005)

    Google Scholar 

  10. Erman, J., Mahanti, A., Arlitt, M., Williamson, C.: Identifying and Discriminating Between Web and Peer-to-peer Traffic in the Network Core. In: International World Wide Web Conference, Banff, Alberta, Canada, May 8-12, pp. 883–892 (2007)

    Google Scholar 

  11. Erman, J., Arlitt, M., Mahanti, A.: Traffic Classification Using Clustering Algorithms. In: SIGCOMM Workshop on Mining Network Data, Pisa, Italy, September 11-15, pp. 281–286 (2006)

    Google Scholar 

  12. Karagiannis, T., Broido, A., Faloutsos, M., claffy, K.: Transport Layer Identification of P2P Traffic. In: Internet Measurement Conference, Taormina, Sicily, Italy, October 25-27, pp. 121–134 (2004)

    Google Scholar 

  13. Choi, T.S., Kim, C.H., Yoon, S., Park, J.S., Lee, B.J., Kim, H.H., Chung, H.S., Jeong, T.S.: Content-aware Internet Application Traffic Measurement and Analysis. In: IEEE/IFIP Network Operations and Management Symposium (NOMS 2004), Seoul, Korea, April 23, vol. 1, pp. 511–524 (2004)

    Google Scholar 

  14. Gummadi, K.P., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M., Zahorjan, J.: Measurement, Modeling, and Analysis of a Peer-to-Peer Filesharing Workload. In: ACM Symposium on Operating Systems Review, December 2003, vol. 27, pp. 314–329 (2003)

    Google Scholar 

  15. Salton, G., Buckley, C.: Term-weighting Approaches in Automatic Text Retrieval. Information Processing and Management 24(5), 513–523 (1988)

    Article  Google Scholar 

  16. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  17. Luhn, H.P.: A Statistical Approach to the Mechanized Encoding and Searching of Literary Information. IBM Journal of Research and Development, 309–317 (October 1957)

    Google Scholar 

  18. Iliofotou, M., Pappu, P., Faloutsos, M., Mitzenmacher, M., Singh, S., Varghese, G.: Network monitoring using traffic dispersion graphs. In: Internet Measurement Conference, San Diego, CA, USA, October 24-26 (2007)

    Google Scholar 

  19. BitTorrent, http://www.bittorrent.com/

  20. Emule, http://www.emule-project.net/

  21. YouTube, http://youtube.com/

  22. Fileguri, http://www.fileguri.com/

  23. Afreeca, http://www.afreeca.com/

  24. Endace, DAG 4.3GE, http://www.endace.com/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chung, J.Y., Park, B., Won, Y.J., Strassner, J., Hong, J.W. (2009). Traffic Classification Based on Flow Similarity. In: Nunzi, G., Scoglio, C., Li, X. (eds) IP Operations and Management. IPOM 2009. Lecture Notes in Computer Science, vol 5843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04968-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04968-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04967-5

  • Online ISBN: 978-3-642-04968-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics