Improving Visualization, Scalability and Performance of Multiclass Problems with SVM Manifold Learning | SpringerLink
Skip to main content

Improving Visualization, Scalability and Performance of Multiclass Problems with SVM Manifold Learning

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5495))

Included in the following conference series:

  • 2137 Accesses

Abstract

We propose a learning framework to address multiclass challenges, namely visualization, scalability and performance. We focus on supervised problems by presenting an approach that uses prior information about training labels, manifold learning and support vector machines (SVMs).

We employ manifold learning as a feature reduction step, nonlinearly embedding data in a low dimensional space using Isomap (Isometric Mapping), enhancing geometric characteristics and preserving the geodesic distance within the manifold. Structured SVMs are used in a multiclass setting with benefits for final multiclass classification in this reduced space. Results on a text classification toy example and on ISOLET, an isolated letter speech recognition problem, demonstrate the remarkable visualization capabilities of the method for multiclass problems in the severely reduced space, whilst improving SVMs baseline performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vapnik, V.: The Nature of Statistical Learning Theory, 2nd edn. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  2. Dumais, S., Platt, J., Heckerman, D.: Inductive Learning Algorithms and Representations for Text categorisation. In: ACM Conf. Information Knowledge Management, pp. 148–155 (1998)

    Google Scholar 

  3. Crammer, K., Singer, Y.: On the Algorithmic Implementation of Multi-class kernel-based vector machines. Journal Machine Learning Research 2, 265–292 (2002)

    MATH  Google Scholar 

  4. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces. In: Int. Conf. Machine Learning, pp. 104–111 (2004)

    Google Scholar 

  5. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Large Margin Methods for Structured and Interdependent Output Variables. Journal Machine Learning Research 6, 1453–1484 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 5500(290), 2319–2323 (2000)

    Article  Google Scholar 

  7. Kim, H., Park, H., Zha, H.: Distance Preserving Dimension Reduction for Manifold Learning. In: Int. Conf. Data Mining, vol. II, pp. 1147–1151 (2007)

    Google Scholar 

  8. Navarro, D., Lee, M.D.: Spatial Visualization of Document Similarity, Defence Human Factors. Special Interest Group Meeting (2001)

    Google Scholar 

  9. Zhang, D., Chen, X., Lee, W.: Text Classification with Kernels on the Multinomial Manifold. In: ACM SIGIR - Special Interest Group on Information Retrieval, pp. 266–273 (2005)

    Google Scholar 

  10. Silva, C., Ribeiro, B.: Text Classification on Embedded Manifolds. In: Geffner, H., Prada, R., Machado Alexandre, I., David, N. (eds.) IBERAMIA 2008. LNCS (LNAI), vol. 5290, pp. 272–281. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Collins, M.: Parameter estimation for statistical parsing models: Theory and practice of distribution-free methods. In: IWPT - International Workshop on Parsing Technologies (2001)

    Google Scholar 

  12. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)

    Book  MATH  Google Scholar 

  13. Comon, P.: Independent Component Analysis: a New Concept? Signal Processing 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  14. Cox, T., Cox, M.: Multidimensional Scaling. Chapman & Hall, London (1994)

    MATH  Google Scholar 

  15. Duraiswami, R., Raykar, V.C.: The Manifolds of Spatial Hearing. In: ICASSP 2005, vol. III, pp. 285–288 (2005)

    Google Scholar 

  16. Geng, X., Zhan, D., Zhou, Z.: Supervised Nonlinear Dimensionality Reduction for Visualization and Classification. IEEE Transactions Systems, Man, and Cybernetics – Part B 35(6), 1098–1107 (2005)

    Article  Google Scholar 

  17. Specht, D.: A General Regression Neural Network. IEEE Transactions on Neural Networks 2(6), 568–576 (1991)

    Article  Google Scholar 

  18. Fanty, M., Cole, R.: Spoken letter recognition. In: Advances in Neural Information Processing Systems, vol. 3 (1991)

    Google Scholar 

  19. van Rijsbergen, C.: Information Retrieval. Butterworths Ed. (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Silva, C., Ribeiro, B. (2009). Improving Visualization, Scalability and Performance of Multiclass Problems with SVM Manifold Learning. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2009. Lecture Notes in Computer Science, vol 5495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04921-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04921-7_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04920-0

  • Online ISBN: 978-3-642-04921-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics