Vehicle Tracking Using Geometric Features | SpringerLink
Skip to main content

Vehicle Tracking Using Geometric Features

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5807))

  • 1741 Accesses

Abstract

Applications such as traffic surveillance require a real-time and accurate method for object tracking. We propose to represent scene observations with parabola segments with an algorithm that allows us to fit parabola segments in real-time to edge pixels. The motion vectors for these parabola segments are obtained in consecutive frames by a matching technique based on distance and intensity. Furthermore, moving rigid objects are detected by an original method that clusters comparable motion vectors. The result is a robust detection and tracking method, which can cope with small changes in viewpoint on the moving rigid object.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shan, Y., Sawhney, H.S., Kumar, R.(T.): Unsupervised Learning of Discriminative Edge Measures for Vehicle Matching between Nonoverlapping Cameras. IEEE Trans. Pattern Analysis and Machine Intelligence 30(4) (April 2008)

    Google Scholar 

  2. Xiong, T., Debrunner, C.: Stochastic Car Tracking With Line- and colour-Based Features. IEEE Trans. on Intelligent Transportation Systems 5(4) (Decemeber 2004)

    Google Scholar 

  3. Wang, J., Yagi, Y.: Integrating color and shape-texture features for adaptive real-time object tracking. IEEE Trans. on Image Processing 17, 235–240 (2008)

    Article  Google Scholar 

  4. Xu, C., Liu, J., Tang, X.: 2D Shape Matching by Contour Flexibility. IEEE Trans. Pattern Analysis and Machine Intelligence 31(1) (January 2009)

    Google Scholar 

  5. Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of Adjacent Contour Segments for Object Detection. IEEE Trans. Pattern Analysis and Machine Intelligence 30(1) (January 2008)

    Google Scholar 

  6. Deboeverie, F., Veelaert, P., Teelen, K., Philips, W.: Face Recognition Using Parabola Edge Map. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 994–1005. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Veelaert, P., Teelen, K.: Fast polynomial segmentation of digitized curves. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 482–493. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Deboeverie, F., Veelaert, P., Philips, W.: Parabola-based Face Recognition and Tracking. In: Proceedings of ProRISC, pp. 308–313 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deboeverie, F., Teelen, K., Veelaert, P., Philips, W. (2009). Vehicle Tracking Using Geometric Features. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2009. Lecture Notes in Computer Science, vol 5807. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04697-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04697-1_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04696-4

  • Online ISBN: 978-3-642-04697-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics