Abstract
A mechanism is manipulable if it is in some agents’ best interest to misrepresent their private information. The revelation principle establishes that, roughly, anything that can be accomplished by a manipulable mechanism can also be accomplished with a truthful mechanism. Yet agents often fail to play their optimal manipulations due to computational limitations or various flavors of incompetence and cognitive biases. Thus, manipulable mechanisms in particular should anticipate byzantine play. We study manipulation-optimal mechanisms: mechanisms that are undominated by truthful mechanisms when agents act fully rationally, and do better than any truthful mechanism if any agent fails to act rationally in any way. This enables the mechanism designer to do better than the revelation principle would suggest, and obviates the need to predict byzantine agents’ irrational behavior. We prove a host of possibility and impossibility results for the concept which have the impression of broadly limiting possibility. These results are largely in line with the revelation principle, although the considerations are more subtle and the impossibility not universal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mas-Colell, A., Whinston, M., Green, J.R.: Microeconomic Theory. Oxford University Press, New York (1995)
Camerer, C.: Behavioral Game Theory: Experiments in Strategic Interaction. Princeton University Press, Princeton (2003)
Bartholdi III, J., Tovey, C., Trick, M.: The computational difficulty of manipulating an election. Social Choice and Welfare 6(3), 227–241 (1989)
Conitzer, V., Sandholm, T.: Universal voting protocol tweaks to make manipulation hard. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico, pp. 781–788 (2003)
Conitzer, V., Sandholm, T.: Computational criticisms of the revelation principle. In: The Conference on Logic and the Foundations of Game and Decision Theory (LOFT), Leipzig, Germany (2004); Earlier versions: AMEC-2003, EC-2004
Procaccia, A.D., Rosenschein, J.S.: Junta Distributions and the Average-Case Complexity of Manipulating Elections. Journal of Artificial Intelligence Research (JAIR) 28, 157–181 (2007)
Nachbar, J.H., Zame, W.R.: Non–computable strategies and discounted repeated games. Economic Theory 8(1), 103–122 (1996)
Conitzer, V., Sandholm, T.: Complexity of mechanism design. In: Proceedings of the 18th Annual Conference on Uncertainty in Artificial Intelligence (UAI), Edmonton, Canada, pp. 103–110 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Othman, A., Sandholm, T. (2009). Better with Byzantine: Manipulation-Optimal Mechanisms. In: Mavronicolas, M., Papadopoulou, V.G. (eds) Algorithmic Game Theory. SAGT 2009. Lecture Notes in Computer Science, vol 5814. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04645-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-04645-2_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04644-5
Online ISBN: 978-3-642-04645-2
eBook Packages: Computer ScienceComputer Science (R0)