Abstract
In this paper a method for clustering patterns represented by sets of sensorimotor features is introduced. Sensorimotor features as a biologically inspired representation have proofed to be working for the recognition task, but a method for unsupervised learning of classes from a set of patterns has been missing yet. By utilization of Self-Organizing Maps as a intermediate step, a hierarchy can be build with standard agglomerative clustering methods.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zetzsche, C., Wolter, J., Schill, K.: Sensorimotor representation and knowledge-based reasoning for spatial exploration and localisation. Cognitive Processing 9, 283–297 (2008)
Reineking, T.: Active Vision-based Localization using Dempster-Shafer Theory. Mastersthesis, University of Bremen (2008)
Collins, A.M., Quillian, M.R.: Retrieval Time from Semantic Memory. Journal of Verbal Learning and Verbal Behaviour 8, 240–247 (1969)
Oesterreich, R.: Handlungsregulation und Kontrolle. Urban & Schwarzberger, München (1981)
Stevens, A., Coupe, P.: Distortions in Judged Spatial Relations. Cognitive Psychology 10, 422–437 (1978)
Johnson, N.F.: The Role of Chunking and Organization in the Process of Recall. In: Bower, G. (ed.) Psychology of Language and Motivation, vol. 4 (1970)
Reed, S.K.: Structural Descriptions and the Limitations of Visual Images. Memory and Cognition 2, 329–336 (1974)
Schill, K., Umkehrer, E., Beinlich, S., Krieger, G., Zetzsche, C.: Scene analysis with saccadic eye movements: Top-down and bottom-up modeling. Journal of Electronic Imaging 10, 152–160 (2001)
Zetzsche, C., Nuding, U.: Nonlinear and higher-order approaches to the encoding of natural scenes. Network: Computation in Neural Systems 16, 191–221 (2005)
Zetzsche, C., Krieger, G.: Intrinsic dimensionality: nonlinear image operators and higher-order statistics. In: Nonlinear image processing, pp. 403–441. Academic Press, Orlando (2001)
Kohonen, T.: Self-Organizing Maps. Springer, Berlin (2001)
Kohonen, T.: Self Organized Formation of Topologically Correct Feature Maps. Biological Cybernetics 43, 59–69 (1982)
Kangas, J.: On the Analysis of Pattern Sequences by Self-Organizing Maps. PhD thesis, Helsinki University of Technology (1994), http://nucleus.hut.fi/~jari/papers/thesis94.ps.Z
Knudsen, E.I., du Lac, S., Esterly, S.D.: Computational maps in the brain. Annu. Rev. Neurosci. 10, 41–65 (1987)
Anderson, J.A., Pellionisz, A., Rosenfeld, E.: Neurocomputing: directions for research, vol. 2. MIT Press, Cambridge (1990)
Ghosh, J., Strehl, A.: Similarity-Based Text Clustering: A Comparative Study. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data. Springer, Berlin (2006)
Ward, J.H.: Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association 58, 236–244 (1963)
Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing. Communications of the ACM 18, 613–620 (1975)
Larsen, B., Aone, C.: Fast and effective text mining using linear-time document clustering. In: KDD 1999 Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 16–22 (1999)
Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-20). Technical Report CUCS-005-96 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gadzicki, K. (2009). Hierarchical Clustering of Sensorimotor Features. In: Mertsching, B., Hund, M., Aziz, Z. (eds) KI 2009: Advances in Artificial Intelligence. KI 2009. Lecture Notes in Computer Science(), vol 5803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04617-9_42
Download citation
DOI: https://doi.org/10.1007/978-3-642-04617-9_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04616-2
Online ISBN: 978-3-642-04617-9
eBook Packages: Computer ScienceComputer Science (R0)