Hierarchical Clustering of Sensorimotor Features | SpringerLink
Skip to main content

Hierarchical Clustering of Sensorimotor Features

  • Conference paper
KI 2009: Advances in Artificial Intelligence (KI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5803))

Included in the following conference series:

Abstract

In this paper a method for clustering patterns represented by sets of sensorimotor features is introduced. Sensorimotor features as a biologically inspired representation have proofed to be working for the recognition task, but a method for unsupervised learning of classes from a set of patterns has been missing yet. By utilization of Self-Organizing Maps as a intermediate step, a hierarchy can be build with standard agglomerative clustering methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zetzsche, C., Wolter, J., Schill, K.: Sensorimotor representation and knowledge-based reasoning for spatial exploration and localisation. Cognitive Processing 9, 283–297 (2008)

    Article  Google Scholar 

  2. Reineking, T.: Active Vision-based Localization using Dempster-Shafer Theory. Mastersthesis, University of Bremen (2008)

    Google Scholar 

  3. Collins, A.M., Quillian, M.R.: Retrieval Time from Semantic Memory. Journal of Verbal Learning and Verbal Behaviour 8, 240–247 (1969)

    Article  Google Scholar 

  4. Oesterreich, R.: Handlungsregulation und Kontrolle. Urban & Schwarzberger, München (1981)

    Google Scholar 

  5. Stevens, A., Coupe, P.: Distortions in Judged Spatial Relations. Cognitive Psychology 10, 422–437 (1978)

    Article  Google Scholar 

  6. Johnson, N.F.: The Role of Chunking and Organization in the Process of Recall. In: Bower, G. (ed.) Psychology of Language and Motivation, vol. 4 (1970)

    Google Scholar 

  7. Reed, S.K.: Structural Descriptions and the Limitations of Visual Images. Memory and Cognition 2, 329–336 (1974)

    Article  Google Scholar 

  8. Schill, K., Umkehrer, E., Beinlich, S., Krieger, G., Zetzsche, C.: Scene analysis with saccadic eye movements: Top-down and bottom-up modeling. Journal of Electronic Imaging 10, 152–160 (2001)

    Article  Google Scholar 

  9. Zetzsche, C., Nuding, U.: Nonlinear and higher-order approaches to the encoding of natural scenes. Network: Computation in Neural Systems 16, 191–221 (2005)

    Article  Google Scholar 

  10. Zetzsche, C., Krieger, G.: Intrinsic dimensionality: nonlinear image operators and higher-order statistics. In: Nonlinear image processing, pp. 403–441. Academic Press, Orlando (2001)

    Chapter  Google Scholar 

  11. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  12. Kohonen, T.: Self Organized Formation of Topologically Correct Feature Maps. Biological Cybernetics 43, 59–69 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kangas, J.: On the Analysis of Pattern Sequences by Self-Organizing Maps. PhD thesis, Helsinki University of Technology (1994), http://nucleus.hut.fi/~jari/papers/thesis94.ps.Z

  14. Knudsen, E.I., du Lac, S., Esterly, S.D.: Computational maps in the brain. Annu. Rev. Neurosci. 10, 41–65 (1987)

    Article  Google Scholar 

  15. Anderson, J.A., Pellionisz, A., Rosenfeld, E.: Neurocomputing: directions for research, vol. 2. MIT Press, Cambridge (1990)

    Google Scholar 

  16. Ghosh, J., Strehl, A.: Similarity-Based Text Clustering: A Comparative Study. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data. Springer, Berlin (2006)

    Google Scholar 

  17. Ward, J.H.: Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association 58, 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  18. Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing. Communications of the ACM 18, 613–620 (1975)

    Article  MATH  Google Scholar 

  19. Larsen, B., Aone, C.: Fast and effective text mining using linear-time document clustering. In: KDD 1999 Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 16–22 (1999)

    Google Scholar 

  20. Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-20). Technical Report CUCS-005-96 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gadzicki, K. (2009). Hierarchical Clustering of Sensorimotor Features. In: Mertsching, B., Hund, M., Aziz, Z. (eds) KI 2009: Advances in Artificial Intelligence. KI 2009. Lecture Notes in Computer Science(), vol 5803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04617-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04617-9_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04616-2

  • Online ISBN: 978-3-642-04617-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics