Comparative Study of Fuzzy Methods for Response Integration in Ensemble Neural Networks for Pattern Recognition | SpringerLink
Skip to main content

Comparative Study of Fuzzy Methods for Response Integration in Ensemble Neural Networks for Pattern Recognition

  • Chapter
Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition

Part of the book series: Studies in Computational Intelligence ((SCI,volume 256))

Abstract

We describe in this paper a new method for response integration in ensemble neural networks with Type-1 Fuzzy Logic and Type-2 Fuzzy Logic using Genetic Algorithms (GA’s) for optimization. In this paper we consider pattern recognition with ensemble neural networks for the case of fingerprints to the test proposed method of response integration. An ensemble neural network of three modules is used. Each module is a local expert on person recognition based on their biometric measure (Pattern recognition for fingerprints). The Response Integration method of the ensemble neural networks has the goal of combining the responses of the modules to improve the recognition rate of the individual modules. First we use GA’s to optimize the fuzzy rules of The Type-1 Fuzzy System and Type-2 Fuzzy System to test the proposed method of response integration and after using GA’s to optimize the membership function of The Type-1 Fuzzy Logic and Type-2 Fuzzy logic to test the proposed method of response integration and finally show the comparison of the results between these methods. We show in this paper a comparative study of fuzzy methods for response integration and the optimization of the results of a type-2 approach for response integration that improves performance over the type-1 logic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Castro, J.R., Castillo, O., Melin, P., Martinez, L.G., Escobar, S., Camacho, I.: Building Fuzzy Inference Systems with Interval Type-2 Fuzzy Logic Toolbox Number 1 in Studies in Fuzziness and Soft Computing, 1st edn., vol. 6, pp. 53–62. Springer, Germany (2007)

    Google Scholar 

  2. Castro, J.R., Castillo, O., Melin, P.: An Interval Type-2 Fuzzy Logic Toolbox for Control Applications. In: Proc. FUZZ-IEEE 2007 (2007)

    Google Scholar 

  3. Chang, S., Greenberg, S.: Fuzzy Measures and Integrals: Theory and Applications, pp. 415–434. Physica-Verlag, NY (2003)

    Google Scholar 

  4. Cunningham, P.: Overfitting and Diversity in Classification Ensembles based on Feature Selection, TCD Computer Science Technical Report, TCD-CS-2000-07

    Google Scholar 

  5. Grabisch, M., Murofushi, T., Sugeno, M.: Fuzzy Measures and Integrals: Theory and Applications, pp. 348–373. Physica-Verlag, NY (1989)

    Google Scholar 

  6. Grabisch, M.: A new algorithm for identifying fuzzy measures and its application to pattern recognition. In: Proc. of 4th IEEE Int. Conf. on Fuzzy Systems, Yokohama, Japan, pp. 145–150 (1995)

    Google Scholar 

  7. Gutta, S., Huang, J., Takacs, B., Wechsler, H.: Face Recognition Using Ensembles of Netrworks. In: 13th International Conference on Pattern Recognition (ICPR 1996), Vienna, Austria, vol. 4, p. 50 (1996)

    Google Scholar 

  8. Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: FVC2004: Third Fingerprint Verification Competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 1–7. Springer, Heidelberg (2004)

    Google Scholar 

  9. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: The full FVC2000 and FVC2002 databases are available in the DVD included. In: Handbook of Fingerprint Recognition. Springer, New York (2003)

    Google Scholar 

  10. MATLAB Trade Marks, ©1994-2007 by the MathWorks, Inc.

    Google Scholar 

  11. Mostafa Abd Allah, M.: Artificial Neural Networks Fingerprints Authentication with Clusters Algorithm. Informatica 29, 303–307 (2005)

    Google Scholar 

  12. Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  13. Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition using Soft Computing. Springer, Heidelberg (2005), ISBN 3-540-24121-3

    MATH  Google Scholar 

  14. Melín, P., González, F., Martínez, G.: Pattern Recognition Using Modular Neural Networks and Genetic Algorithms. In: ICAI 2004, pp. 77–83 (2004)

    Google Scholar 

  15. Melín, P., Mancilla, A., Lopez, M., Solano, D., Soto, M., Castillo, O.: Pattern Recognition for Industrial Security using the Fuzzy Sugeno Integral and Modular Neural Networks. In: WSC11 11th Online World Conference on Soft Computing in Industrial Applications, September 18-October 6 (2006)

    Google Scholar 

  16. Melín, P., Urias, J., Solano, D., Soto, M., Lopez, M., Castillo, O.: Voice Recognition with Neural Networks, Type-2 Fuzzy Logic and Genetic Algorithms. Engineering Letters 13(2), 108–116 (2006)

    Google Scholar 

  17. Mendoza, O., Melin, P., Licea, G.: Modular Neural Networks and Type-2 Fuzzy Logic for Face Recognition. In: Reformat, M. (ed.) Proceedings of NAFIPS 2007, San Diego, June 2007, vol. 1 (2007), pages CD Rom

    Google Scholar 

  18. Nemmour, H., Chibani, Y.: Neural Network Combination by Fuzzy Integral for Robust Change Detection in Remotely Sensed Imagery. EURASIP Journal on Applied Signal Processing 14, 2187–2195 (2005)

    Google Scholar 

  19. Opitz, D.W.: Feature Selection for Ensembles. In: Sixteenth National Conference on Artificial/ Intelligence (AAAI), Orlando, FL, pp. 379–384 (1999)

    Google Scholar 

  20. Opitz, D., Maclin, R.: Popular Ensemble Methods: An Empirical Study. Journal of Artificial Intelligence Research 11, 169–198 (1999)

    MATH  Google Scholar 

  21. Opitz, D.W., Shavlik, J.W.: Generating accurate and diverse members of a neural network ensemble. In: Touretzky, D.S., Mozer, M., Hasselmo, M. (eds.) Advances in Neural Information Processing Systems 8, pp. 535–541. MIT Press, Cambridge (1996)

    Google Scholar 

  22. Sharkey, A.C.: Modularity, combining and artificial neural nets, Connection Science, vol. 8, pp. 299–313 (1996)

    Google Scholar 

  23. Sharkey, A.C.: On combining artificial neural nets, Connection Science, vol. 8, pp. 299–313 (1996)

    Google Scholar 

  24. Urias, J., Solano, D., Soto, M., Lopez, M., Melín, P.: Type-2 Fuzzy Logic as a Method of Response Integration in Modular Neural Networks. In: ICAI 2006, pp. 584–590 (2006)

    Google Scholar 

  25. Zadeh, L.A.: Fuzzy Logic. Computer 1(4), 83–93 (1998)

    Google Scholar 

  26. Oh, J.-H., Kang, K.: Experts or an Ensemble A Statistical Mechanics Perspective of Multiple Neural Network Approaches, Korea, 790–784.

    Google Scholar 

  27. Jain, A., Bolle, R., Pankanti, S.: Biometrics - Personal Identification in Networked Society. Kluwer Academic Publisher, Dordrecht (1999)

    Google Scholar 

  28. López, M., Melin, P., Castillo, O.: Optimization of Response Integration with Fuzzy Logic in Ensemble Neural Networks Using Genetic Algorithms. Soft Computing for Hybrid Intelligent Systems, 129–150 (2008)

    Google Scholar 

  29. Fingerprint Identification Systems, FBI, http://www.fbi.gov/hq/cjisd/ident.pdf

  30. Liu, Y., Yao, X., Higuchi, T.: Designing Neural Network Ensembles by Minimizing Mutual Information. In: Proceedings of the IASTED International on Conference Modeling, Simulation and Optimization MSO 2003, Banff, Canada, July 2-4, pp. 167–172 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lopez, M., Melin, P., Castillo, O. (2009). Comparative Study of Fuzzy Methods for Response Integration in Ensemble Neural Networks for Pattern Recognition. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition. Studies in Computational Intelligence, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04516-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04516-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04515-8

  • Online ISBN: 978-3-642-04516-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics