Prediction of the MXNUSD Exchange Rate Using Hybrid IT2 FLS Forecaster | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 256))

  • 568 Accesses

Abstract

This paper presents a novel application of the interval type-1 non-singleton type-2 fuzzy logic system (FLS) for one step ahead prediction of the daily exchange rate between Mexican Peso and US Dollar (MXNUSD) using the recursive least-squared (RLS)-back-propagation (BP) hybrid learning method. Experiments show that the exchange rate is predictable. A non-singleton type-1 FLS and an interval type-1 non-singleton type-2 FLS, both using only BP learning method, are used as a benchmarking systems to compare the results of the hybrid interval type-1 non-singleton type-2 FLS (RLS-BP) forecaster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mendel, J.M.: Uncertain rule-based fuzzy Logic systems: Introduction and New Directions. Prentice-Hall, Upper Saddle River (2001)

    MATH  Google Scholar 

  2. Mendez, G., Cavazos, A., Leduc, L., Soto, R.: Hot strip temperature prediction using hybrid learning for interval singleton type-2 FLS. In: Proceedings of the IASTED International Conference on Modelling and Simulation, pp. 380–385. Palm Springs, CA (2003)

    Google Scholar 

  3. Mendez, G.: Orthogonal-back propagation hybrid learning algorithm for type-2 fuzzy logic systems. In: IEEE Proceedings of the NAFIPS 2004 International Conference on Fuzzy Sets, Banff Alberta Canada, vol. Vol. 2, pp. 899–902 (2004)

    Google Scholar 

  4. Hagras, H.A.: A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Transactions on Fuzzy Systems 12(4), 524–539 (2004)

    Article  Google Scholar 

  5. Castillo, O., Melin, P.: A new hybrid approach for plant monitoring and diagnostics using type-2 fuzzy logic and fractal theory. In: Proceedings of the International Conference FUZZ 2003, pp. 102–107 (2003)

    Google Scholar 

  6. Castillo, O., Huesca, G., Valdez, F.G.: Evolutionary computing for optimizing type-2 fuzzy systems in intelligent control of non-linear dynamic plants. In: IEEE Proceedings of the NAFIPS 2005 International Conference, pp. 247–251 (2005)

    Google Scholar 

  7. Anastasakis, L., Mort, N.: Prediction of the GSPUSD exchange rate using statistical and neural network models. In: Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, Benalmadena, España, pp. 493–498 (2003)

    Google Scholar 

  8. Lendasse, A., de Boot, E., Wertz, V., Verleysen, M.: Non-linear financial time series forecasting – application to the bel 20 stock market index. European Journal of Economics and Social Systems 14, 81–91 (2000)

    Article  MATH  Google Scholar 

  9. Ito, Y.: Neuro-fuzzy phillips-type stabilization policy for stock process and exchange-rates models. In: Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, Benalmadena, España, pp. 499–504 (2003)

    Google Scholar 

  10. Saad, E.W., Prokhorov, D.V., Wunch II, D.C.: Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks. IEE Trans. On Neural Networks 9, 1456–1470 (1998)

    Article  Google Scholar 

  11. Leigh, W., Paz, M., Purvis, R.: An analysis of a hybrid neural network and pattern recognition technique for short term increases in the NYSE composite index. The International Journal of Management Science 30, 169–176 (2002)

    Google Scholar 

  12. Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. Trans. on Fuzzy Systems 8, 535–550 (2000)

    Article  Google Scholar 

  13. John, R.I.: Embedded interval valued type-2 fuzzy sets. In: Proceedings of the 2002 IEEE International Conference on Fuzzy Systems, Honolulu, Hawaii, vol. 1&2, pp. 1316–1321 (2002)

    Google Scholar 

  14. Mendel, J.M., John, R.I.: Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy Systems 10, 117–127 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mendez, G.M., Hernandez, A. (2009). Prediction of the MXNUSD Exchange Rate Using Hybrid IT2 FLS Forecaster. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition. Studies in Computational Intelligence, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04516-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04516-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04515-8

  • Online ISBN: 978-3-642-04516-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics