Modular Neural Network with Fuzzy Integration of Responses for Face Recognition | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 257))

  • 851 Accesses

Abstract

This paper presents a modular neural network with fuzzy integration of responses for face recognition. We describe its architecture and simulation results using the ORL database. We show results from different integrators, such as the Gating Network, fuzzy Sugeno integrals and type-1 fuzzy systems. We also show that the results with type-1 fuzzy systems are good, but we decided to optimize this fuzzy system with genetic algorithms (MFs parameters and fuzzy rules) to improve the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hilera, J.R., Martínez, V.J.: Artificial Neural Networks (2000), http://www.monografias.com/trabajos12/redneuro/redneuro.shtml

  2. Skapura, D.M.: Building Neural Networks (1996), http://www.une.edu.ve/electronica/neurona.htm

  3. Adam, F.: Biologically Inspired Modular Neural Networks. Blacksburg, Virginia (2000)

    Google Scholar 

  4. Holland, J.: Genetic algorithms. Scientific American, Julio de, 66–72 (1992)

    Google Scholar 

  5. Serrano, E.P.: Introduction to Wavelet Transform and Its Applications to Signal Processing of Acoustic Emission. School of Science and Technology. National Unity of General San Martín

    Google Scholar 

  6. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man, and Cybernetics 31(6), 891–901 (2001)

    Article  MathSciNet  Google Scholar 

  7. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  8. Mamdani, E.H.: Advances in the linguistic synthesis of fuzzy controllers. International Journal of Man-Machine Studies 8, 669–678 (1976)

    Article  MATH  Google Scholar 

  9. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming, freely available via Lulu.com, Global Optimization Algorithms - Theory and Application (2008), ISBN 978-1-4092-0073-4

    Google Scholar 

  10. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)

    Google Scholar 

  11. Copyright© AT&T Laboratories, Cambridge (2002), http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

  12. Castillo, O., Melín, P.: Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic, and fractal theory. IEEE Transactions on Neural Networks 13(6), 1395–1408 (2002)

    Article  Google Scholar 

  13. Faros, A.: Biologically Inspired Modular Neural Networks. Blacksburg, Virginia (May 2000); Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

    Google Scholar 

  14. Melín, P., Gonzalez, F., Martinez, G.: Pattern Recognition Using Modular Neural Networks and Genetic Algorithms. In: Proc. IC-AI 2004, Las Vegas, Nevada, USA, pp. 77–83 (2004)

    Google Scholar 

  15. Nuñez, R.: ITT, Parallel Modular Neural Networks for Recognition of Persons (February 2008)

    Google Scholar 

  16. Sugeno, M.: Theory of Fuzzy integrals and its application, Tokyo Institute of Technology (1974)

    Google Scholar 

  17. Salinas, R.: Department of Electrical Engineering, University of Santiago de Chile, Neural Network Architecture in Parametric Face Recognition University Diego Portales, http://cabierta.uchile.cl/revista/17/articulos/pdf/paper4.pdf (August 2008)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ayala, E., Lopez, M., Melin, P. (2009). Modular Neural Network with Fuzzy Integration of Responses for Face Recognition. In: Castillo, O., Pedrycz, W., Kacprzyk, J. (eds) Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control. Studies in Computational Intelligence, vol 257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04514-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04514-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04513-4

  • Online ISBN: 978-3-642-04514-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics