Methodology to Test and Validate a VHDL Inference Engine of a Type-2 FIS, through the Xilinx System Generator | SpringerLink
Skip to main content

Methodology to Test and Validate a VHDL Inference Engine of a Type-2 FIS, through the Xilinx System Generator

  • Chapter
Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control

Part of the book series: Studies in Computational Intelligence ((SCI,volume 257))

Abstract

In this paper an improved high performance type-1 inference engine (IE) is proposed that can be applied with no modifications to the implementation of a type-2 FIS using the average method. The performance of the type-2 FIS will not be diminish for the use of this stage since it is achieved in parallel. The proposals are focused to be implemented into an FPGA. Simulink models to test the type-1 and type-2 inference engines are presented. The type-2 IE was tested in a speed controller for a DC motor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hagras, H.: A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Transactions on Fuzzy Systems (2004)

    Google Scholar 

  2. Wu, H., Mendel, J.M.: Uncertanty Bounds and Their use in the Design of Interval type-2 Fuzzy Logic Systems. IEEE Transactions on Fuzzy Systems 10, 1–16 (2002)

    Google Scholar 

  3. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice-Hall, Englewood Cliffs (1997)

    Google Scholar 

  4. Mendel, J.M.: Type-2 Fuzzy Sets and Systems: an Overview. IEEE Computational Intelligence Magazine 2, 20–29 (2007)

    Google Scholar 

  5. Mendel, J.M.: Fuzzy Sets for Words: a New Beginning. In: Proc. of IEEE International Conf. on Fuzzy Systems, St. Louis, MO, pp. 37–42 (2003)

    Google Scholar 

  6. Mendel, J.M., Bob John, R.I.: Type-2 Fuzzy Sets Made Simple. IEEE Transactions on Fuzzy Systems 10, 117–127 (2002)

    Article  Google Scholar 

  7. Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Upper-Saddle River (2001)

    MATH  Google Scholar 

  8. Karnik, N.N., Mendel, J.M.: Qilian Liang: Type-2 Fuzzy Logic Systems. IEEE Transactions on Fuzzy Systems 7, 643–658 (1999)

    Article  Google Scholar 

  9. Karnik, N., Mendel, J.M.: Centroid of a Type-2 Fuzzy Set. Information Sciences 132, 195–220 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lee, K.H.: Advances in Soft Computing: First Course on Fuzzy Theory and Applications. Springer, Germany (2005)

    Google Scholar 

  11. Lago, E., Jiménez, C.J., López, D.R., Sánchez-Solano, S., Barriga, A.: XFVHDL: A Tool for the Synthesis of Fuzzy Logic Controllers. Design Automation and Test in Europe, 102–107 (1998)

    Google Scholar 

  12. Liang, Q., Mendel, J.M.: Interval Type-2 Fuzzy Logic Systems: Theory and Design. IEEE Trans. on Fuzzy Systems 8, 535–550 (2000)

    Article  Google Scholar 

  13. Melgarejo, M., Peña-Reyes, C.A.: Implementing Interval type-2 Fuzzy Processors. IEEE Computational Intelligence Magazine 2, 63–71 (2007)

    Article  Google Scholar 

  14. Melgarejo, M.A.R., Peña-Reyes, C.A.: Hardware architecture and FPGA implementation of a type-2 fuzzy system. In: Proceedings of the 14th ACM Great Lakes symposium on VLSI, pp. 458–461 (2004)

    Google Scholar 

  15. Melgarejo, M.A., Garcia, R.A., Peña-Reyes, C.A.: Pro-Two: a hardware based platform for real time type-2 fuzzy inference. In: Proceedings of 2004 IEEE International Conference on Publication Fuzzy Systems, vol. 2, pp. 977–982 (2004)

    Google Scholar 

  16. Cirstea, M.N., Dinu, A., Khor, J.G., McCormick, M.: Neural and Fuzzy Logic Control of Drives and Power System, Newnes (2002)

    Google Scholar 

  17. Sepúlveda, R., Castillo, O., Melín, P., Díaz, A.R., Montiel, O.: Experimental Study of Intelligent Controllers under Uncertainty using type-1 and type-2 Fuzzy Logic. Information Sciences 177, 2023–2048 (2007)

    Article  Google Scholar 

  18. Sepúlveda, R., Castillo, O., Melín, P., Montiel, O.: An Efficient Computational Method to implement Type-2 Fuzzy Logic in Control Applications. In: Analysis and Design of Intelligent Systems Using Soft Computing Techniques. Advances in soft computing, vol. 41, pp. 45–52. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Montiel, O., Maldonado, Y., Sepúlveda, R., Castillo, O.: Simple tuned fuzzy controller embedded into an FPGA. In: 2008 NAFIPS Conference Proceedings, pp. 1–6 (2008)

    Google Scholar 

  20. Montiel, O., Olivas, J., Sepúlveda, R., Castillo, O.: Development of an Embedded Simple Tuned Fuzzy Controller. In: Zurada, J.M., Yen, G.G., Wang, J. (eds.) Computational Intelligence: Research Frontiers. LNCS, vol. 5050, pp. 555–561. Springer, Heidelberg (2008)

    Google Scholar 

  21. Vuong, P.T., Madni, A.M., Voung, J.B.: VHDL Implementation for a Fuzzy Logic Controller. In: World Automation Congress WAC apos; 2006, pp. 1–8 (2006)

    Google Scholar 

  22. Iregui, S., Linares, D., Melgarejo, M.: Performance Evaluation of Fuzzy Operators for FPGA Technology. In: NAFIPS 2008, New York (2008)

    Google Scholar 

  23. Sánchez-Solano, S., Senhadji, R., Cabrera, A., Baturone, I., Jiménez, C.J., Barriga, A.: Prototyping of Fuzzy Logic Based Controllers Using Standard FPGA Development Boards. In: 13th IEEE International Workshop on Rapid System Prototyping on Volume, pp. 25–32 (2002)

    Google Scholar 

  24. Sánchez Solano, S., Barriga, A., Jiménez, C.J., Huertas, J.L.: Design and Application of Digital Fuzzy Controllers. In: Sixth IEEE International Conference on Fuzzy Systems (FUZZ-IEED 1997), vol. 2, Barcelona, Spain, pp. 869–874 (1997)

    Google Scholar 

  25. Maldonado, Y., Montiel, O., Sepúlveda, R., Castillo, O.: Design and simulation of the fuzzification stage through the Xilinx System Generator. Soft Computing for Hybrid Intelligent Systems, vol. 154, pp. 297–305. Springer, Heidelberg (2008)

    Google Scholar 

  26. Olivas, J., Sepuúlveda, R., Montiel, O., Castillo, O.: Methodology to Test and Validate a VHDL Inference through the Xilinx System Generator. Soft Computing for Hybrid Intelligent Systems, vol. 154, pp. 325–331. Springer, Heidelberg (2008)

    Google Scholar 

  27. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Information Sciences 8, 199–249 (1975)

    Article  MathSciNet  Google Scholar 

  28. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sepúlveda, R., Montiel, O., Olivas, J., Castillo, O. (2009). Methodology to Test and Validate a VHDL Inference Engine of a Type-2 FIS, through the Xilinx System Generator. In: Castillo, O., Pedrycz, W., Kacprzyk, J. (eds) Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control. Studies in Computational Intelligence, vol 257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04514-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04514-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04513-4

  • Online ISBN: 978-3-642-04514-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics