Abstract
We show that all ε-transitions can be removed from timed automata if we allow transitions to be labeled with periodic clock constraints and with periodic clock updates. This utilizes a representation of the reachability relation in timed automata in a generalization of Difference Logic with periodic constraints. We also show that periodic updates are necessary for the removal of ε-transitions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)
Asarin, E.: Challenges in timed languages. Bulletin of EATCS 83 (2004)
Asarin, E., Degorre, A.: Volume and entropy of regular timed languages. HAL Archive no. hal-00369812 (2009)
Bellmann, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
Bengtsson, J.E., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed systems. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 485–500. Springer, Heidelberg (1998)
Bérard, B., Diekert, V., Gastin, P., Petit, A.: Characterization of the expressive power of silent transitions in timed automata. Fundamenta Informaticae 36, 145–182 (1998)
Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Are timed automata updatable? In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 464–479. Springer, Heidelberg (2000)
Bouyer, P., Dufourd, C., Fleury, É., Petit, A.: Expressiveness of updatable timed automata. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 232–242. Springer, Heidelberg (2000)
Bouyer, P., Haddad, S., Reynier, P.-A.: Undecidability results for timed automata with silent transitions. Fundamenta Informaticae 92, 1–25 (2009)
Choffrut, C., Goldwurm, M.: Timed automata with periodic clock constraints. Journal of Automata, Languages and Combinatorics 5, 371–404 (2000)
Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 242–257. Springer, Heidelberg (1999)
Dima, C.: An algebraic theory of real-time formal languages. PhD thesis, Université Joseph Fourier Grenoble, France (2001)
Dima, C.: Computing reachability relations in timed automata. In: Proceedings of the 17th IEEE Symposium on Logic in Computer Science (LICS 2002), pp. 177–186 (2002)
Dima, C.: A nonarchimedian discretization for timed languages. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 161–181. Springer, Heidelberg (2004)
Dima, C.: A class of automata for computing reachability relations in timed systems. In: Clarke, E., Tiplea, F.L. (eds.) Proceedings of the NATO Advanced Research Workshop on Verification of Infinite State Systems with Applications to Security (VISSAS 2005). NATO ARW Series (to appear, 2005)
Dima, C., Lanotte, R.: Removing all silent transitions from timed automata. Technical Report TR-LACL-2009-6, LACL (2009)
Jurski, Y.: Expression de la relation binaire d’accessibilité pour les automates à compteurs plats et les automates temporisés. PhD thesis, École Normale Supérieure de Cachan, France (1999)
Mahfoudh, M., Niebert, P., Asarin, E., Maler, O.: A satisfiability checker for difference logic. In: Proceedings of SAT 2002, pp. 222–230 (2002)
Ouaknine, J., Worrell, J.: Revisiting digitization, robustness, and decidability for timed automata. In: Proceedings of LICS 2003, pp. 198–207. IEEE Computer Society Press, Los Alamitos (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dima, C., Lanotte, R. (2009). Removing All Silent Transitions from Timed Automata. In: Ouaknine, J., Vaandrager, F.W. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2009. Lecture Notes in Computer Science, vol 5813. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04368-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-04368-0_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04367-3
Online ISBN: 978-3-642-04368-0
eBook Packages: Computer ScienceComputer Science (R0)