Removing All Silent Transitions from Timed Automata | SpringerLink
Skip to main content

Removing All Silent Transitions from Timed Automata

  • Conference paper
Formal Modeling and Analysis of Timed Systems (FORMATS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5813))

Abstract

We show that all ε-transitions can be removed from timed automata if we allow transitions to be labeled with periodic clock constraints and with periodic clock updates. This utilizes a representation of the reachability relation in timed automata in a generalization of Difference Logic with periodic constraints. We also show that periodic updates are necessary for the removal of ε-transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asarin, E.: Challenges in timed languages. Bulletin of EATCS 83 (2004)

    Google Scholar 

  3. Asarin, E., Degorre, A.: Volume and entropy of regular timed languages. HAL Archive no. hal-00369812 (2009)

    Google Scholar 

  4. Bellmann, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  5. Bengtsson, J.E., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed systems. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 485–500. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Bérard, B., Diekert, V., Gastin, P., Petit, A.: Characterization of the expressive power of silent transitions in timed automata. Fundamenta Informaticae 36, 145–182 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Are timed automata updatable? In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 464–479. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Bouyer, P., Dufourd, C., Fleury, É., Petit, A.: Expressiveness of updatable timed automata. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 232–242. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Bouyer, P., Haddad, S., Reynier, P.-A.: Undecidability results for timed automata with silent transitions. Fundamenta Informaticae 92, 1–25 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Choffrut, C., Goldwurm, M.: Timed automata with periodic clock constraints. Journal of Automata, Languages and Combinatorics 5, 371–404 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 242–257. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Dima, C.: An algebraic theory of real-time formal languages. PhD thesis, Université Joseph Fourier Grenoble, France (2001)

    Google Scholar 

  13. Dima, C.: Computing reachability relations in timed automata. In: Proceedings of the 17th IEEE Symposium on Logic in Computer Science (LICS 2002), pp. 177–186 (2002)

    Google Scholar 

  14. Dima, C.: A nonarchimedian discretization for timed languages. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 161–181. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Dima, C.: A class of automata for computing reachability relations in timed systems. In: Clarke, E., Tiplea, F.L. (eds.) Proceedings of the NATO Advanced Research Workshop on Verification of Infinite State Systems with Applications to Security (VISSAS 2005). NATO ARW Series (to appear, 2005)

    Google Scholar 

  16. Dima, C., Lanotte, R.: Removing all silent transitions from timed automata. Technical Report TR-LACL-2009-6, LACL (2009)

    Google Scholar 

  17. Jurski, Y.: Expression de la relation binaire d’accessibilité pour les automates à compteurs plats et les automates temporisés. PhD thesis, École Normale Supérieure de Cachan, France (1999)

    Google Scholar 

  18. Mahfoudh, M., Niebert, P., Asarin, E., Maler, O.: A satisfiability checker for difference logic. In: Proceedings of SAT 2002, pp. 222–230 (2002)

    Google Scholar 

  19. Ouaknine, J., Worrell, J.: Revisiting digitization, robustness, and decidability for timed automata. In: Proceedings of LICS 2003, pp. 198–207. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dima, C., Lanotte, R. (2009). Removing All Silent Transitions from Timed Automata. In: Ouaknine, J., Vaandrager, F.W. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2009. Lecture Notes in Computer Science, vol 5813. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04368-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04368-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04367-3

  • Online ISBN: 978-3-642-04368-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics