Abstract
The paper proposes a unified direct approach to a number of problems arising in image processing. In particular, the areas of image registration, and object or pattern recognition are addressed when the images of interest display significant geometric distortion due to some physical or geometrical conditions. The proposed method performs a direct multi-objective search in image response space for an optimal piece-wise affine transformation of the images using a hybrid evolutionary algorithm. In its most general form, the entire algorithm works in two relatively independent passes. First, the global search attempts to find the optimal solution for the principal affine transformation. During the second pass, the correction procedure seeks for the optimal piece-wise approximation of the actual image transformation using the result of the first pass as the initial approximation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hallpike, L., Hawkes, D.J.: Medical Image Registration: an Overview. Imaging 14, 455–463 (2002)
Zitová, B., Flusser, J.: Image Registration Methods: a Survey. Image and Vision Computing 21, 977–1000 (2003)
Cordón, O., Damas, S., Santamaría, J.: A CHC Evolutionary Algorithm for 3D Image Registration. In: Fuzzy Sets and Systems — IFSA 2003, pp. 134–211 (2003)
Wachowiak, M.P., Smolíková, R., Zheng, Y., Zurada, J.M., Elmaghraby, A.S.: An Approach to Multimodal Biomedical Image Registration Utilizing Particle Swarm Optimization. IEEE Transactions on Evolutionary Computation 8, 289–301 (2004)
Han, J., Bhanu, B.: Hierarchical Multi-Sensor Image Registration Using Evolutionary Computation. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, Washington DC, USA, June 25-29, pp. 2045–2052 (2005)
Cordón, O., Damas, S., Santamaría, J.: Feature-Based Image Registration by Means of the CHC Evolutionary Algorithm. Image and Vision Computing 24, 525–533 (2006)
Khamene, A., Azar, F., Schwarz, L., Zikic, D., Navab, N., Rietzel, E.: A Unified and Efficient Approach for Free-Form Deformable Registration. In: IEEE 11th International Conference on Computer Vision - ICCV 2007, pp. 1–8 (2007)
Hu, C., Li, Q.Y.Y., Ma, S.: Extraction of Parametric Human Model for Posture Recognition Using Genetic Algorithm. In: Proc. of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 518–523 (2000)
Zhao, J., Li, L.: Human Motion Reconstruction from Monocular Images Using Genetic Algorithms. Comp. Anim. Virtual Worlds 15, 407–414 (2004)
Shen, S., Chen, W.: Probability evolutionary algorithm based human body tracking. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 525–529. Springer, Heidelberg (2006)
Maslov, I.V., Gertner, I.: Using Image Local Response for Efficient Image Fusion with the Hybrid Evolutionary Algorithm. In: Sadjadi, F.A. (ed.) Automatic Target Recognition XIV: AeroSense 2004. Proc. SPIE, vol. 5426, pp. 326–333. SPIE, San Jose (2004)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)
Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York (1996)
Gertner, I., Maslov, I.V.: Using Local Correction and Mutation with Memory to Improve Convergence of Evolutionary Algorithm in Image Registration. In: Automatic Target Recognition XII: AeroSense 2002. Proc. SPIE, vol. 4726, pp. 241–252. SPIE, San Jose (2002)
Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. Computer J. 7, 308–313 (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maslov, I.V., Gertner, I. (2009). A Unified Direct Approach to Image Registration and Object Recognition with a Hybrid Evolutionary Algorithm. In: Huang, DS., Jo, KH., Lee, HH., Kang, HJ., Bevilacqua, V. (eds) Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence. ICIC 2009. Lecture Notes in Computer Science(), vol 5755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04020-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-04020-7_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04019-1
Online ISBN: 978-3-642-04020-7
eBook Packages: Computer ScienceComputer Science (R0)