A Unified Direct Approach to Image Registration and Object Recognition with a Hybrid Evolutionary Algorithm | SpringerLink
Skip to main content

A Unified Direct Approach to Image Registration and Object Recognition with a Hybrid Evolutionary Algorithm

  • Conference paper
Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence (ICIC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5755))

Included in the following conference series:

  • 1151 Accesses

Abstract

The paper proposes a unified direct approach to a number of problems arising in image processing. In particular, the areas of image registration, and object or pattern recognition are addressed when the images of interest display significant geometric distortion due to some physical or geometrical conditions. The proposed method performs a direct multi-objective search in image response space for an optimal piece-wise affine transformation of the images using a hybrid evolutionary algorithm. In its most general form, the entire algorithm works in two relatively independent passes. First, the global search attempts to find the optimal solution for the principal affine transformation. During the second pass, the correction procedure seeks for the optimal piece-wise approximation of the actual image transformation using the result of the first pass as the initial approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hallpike, L., Hawkes, D.J.: Medical Image Registration: an Overview. Imaging 14, 455–463 (2002)

    Google Scholar 

  2. Zitová, B., Flusser, J.: Image Registration Methods: a Survey. Image and Vision Computing 21, 977–1000 (2003)

    Article  Google Scholar 

  3. Cordón, O., Damas, S., Santamaría, J.: A CHC Evolutionary Algorithm for 3D Image Registration. In: Fuzzy Sets and Systems — IFSA 2003, pp. 134–211 (2003)

    Google Scholar 

  4. Wachowiak, M.P., Smolíková, R., Zheng, Y., Zurada, J.M., Elmaghraby, A.S.: An Approach to Multimodal Biomedical Image Registration Utilizing Particle Swarm Optimization. IEEE Transactions on Evolutionary Computation 8, 289–301 (2004)

    Article  Google Scholar 

  5. Han, J., Bhanu, B.: Hierarchical Multi-Sensor Image Registration Using Evolutionary Computation. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, Washington DC, USA, June 25-29, pp. 2045–2052 (2005)

    Google Scholar 

  6. Cordón, O., Damas, S., Santamaría, J.: Feature-Based Image Registration by Means of the CHC Evolutionary Algorithm. Image and Vision Computing 24, 525–533 (2006)

    Article  Google Scholar 

  7. Khamene, A., Azar, F., Schwarz, L., Zikic, D., Navab, N., Rietzel, E.: A Unified and Efficient Approach for Free-Form Deformable Registration. In: IEEE 11th International Conference on Computer Vision - ICCV 2007, pp. 1–8 (2007)

    Google Scholar 

  8. Hu, C., Li, Q.Y.Y., Ma, S.: Extraction of Parametric Human Model for Posture Recognition Using Genetic Algorithm. In: Proc. of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 518–523 (2000)

    Google Scholar 

  9. Zhao, J., Li, L.: Human Motion Reconstruction from Monocular Images Using Genetic Algorithms. Comp. Anim. Virtual Worlds 15, 407–414 (2004)

    Article  Google Scholar 

  10. Shen, S., Chen, W.: Probability evolutionary algorithm based human body tracking. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 525–529. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Maslov, I.V., Gertner, I.: Using Image Local Response for Efficient Image Fusion with the Hybrid Evolutionary Algorithm. In: Sadjadi, F.A. (ed.) Automatic Target Recognition XIV: AeroSense 2004. Proc. SPIE, vol. 5426, pp. 326–333. SPIE, San Jose (2004)

    Google Scholar 

  12. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  13. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  14. Gertner, I., Maslov, I.V.: Using Local Correction and Mutation with Memory to Improve Convergence of Evolutionary Algorithm in Image Registration. In: Automatic Target Recognition XII: AeroSense 2002. Proc. SPIE, vol. 4726, pp. 241–252. SPIE, San Jose (2002)

    Google Scholar 

  15. Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. Computer J. 7, 308–313 (1965)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maslov, I.V., Gertner, I. (2009). A Unified Direct Approach to Image Registration and Object Recognition with a Hybrid Evolutionary Algorithm. In: Huang, DS., Jo, KH., Lee, HH., Kang, HJ., Bevilacqua, V. (eds) Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence. ICIC 2009. Lecture Notes in Computer Science(), vol 5755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04020-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04020-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04019-1

  • Online ISBN: 978-3-642-04020-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics