Nonmonotone Learning of Recurrent Neural Networks in Symbolic Sequence Processing Applications | SpringerLink
Skip to main content

Nonmonotone Learning of Recurrent Neural Networks in Symbolic Sequence Processing Applications

  • Conference paper
Engineering Applications of Neural Networks (EANN 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 43))

  • 1416 Accesses

Abstract

In this paper, we present a formulation of the learning problem that allows deterministic nonmonotone learning behaviour to be generated, i.e. the values of the error function are allowed to increase temporarily although learning behaviour is progressively improved. This is achieved by introducing a nonmonotone strategy on the error function values. We present four training algorithms which are equipped with nonmonotone strategy and investigate their performance in symbolic sequence processing problems. Experimental results show that introducing nonmonotone mechanism can improve traditional learning strategies and make them more effective in the sequence problems tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Antunes, C.M., Oliveira, A.L.: Temporal data mining: an overview. In: Proc. KDD Workshop on Temporal Data Mining, San Francisco, CA, August 26, 2001, pp. 1–13 (2001)

    Google Scholar 

  2. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)

    MATH  Google Scholar 

  3. Elman, J.L., Bates, E.A., Johnson, M.H., Karmiloff-Smith, A., Parisi, D., Plunkett, K.: The shape of change. In: Rethinking Innateness: A Connectionist Perspective on Development, ch. 6. MIT Press, Cambridge (1997)

    Google Scholar 

  4. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numerical Analysis 23, 707–716 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grippo, L., Lampariello, F., Lucidi, S.: A quasi-discrete Newton algorithm with a nonmonotone stabilization technique. J. Optimization Theory and Applications 64(3), 495–510 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grippo, L., Lampariello, F., Lucidi, S.: A class of nonmonotone stabilization methods in unconstrained optimization. Numerische Mathematik 59, 779–805 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grippo, L., Sciandrone, M.: Nonmonotone globalization techniques for the Barzilai-Borwein gradient method. Computational Optimization and Applications 23, 143–169 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fasano, G., Lampariello, F., Sciandrone, M.: A truncated nonmonotone Gauss-Newton method for large-scale nonlinear least-squares problems. Computational Optimization and Applications 34, 343–358 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Plagianakos, V.P., Magoulas, G.D., Vrahatis, M.N.: Deterministic nonmonotone strategies for effective training of multi-layer perceptrons. IEEE Trans. Neural Networks 13(6), 1268–1284 (2002)

    Article  Google Scholar 

  10. Medsker, L.R., Jain, L.C.: Recurrent neural networks: design and applications. CRC Press, Boca Raton (2000)

    Google Scholar 

  11. Nelles, O.: Nonlinear System Identification. Springer, Berlin (2000)

    MATH  Google Scholar 

  12. Riedmiller, M., Braun, H.: Rprop – a fast adaptive learning algorithm. In: Proc. Int’l Symposium on Computer and Information Sciences, Antalya, Turkey, pp. 279–285 (1992)

    Google Scholar 

  13. Igel, C., Hüsken, M.: Empirical evaluation of the improved Rprop learning algorithms. Neurocomputing 50, 105–123 (2003)

    Article  MATH  Google Scholar 

  14. Anastasiadis, A., Magoulas, G.D., Vrahatis, M.N.: Sign-based Learning Schemes for Pattern Classification. Pattern Recognition Letters 26, 1926–1936 (2005)

    Article  Google Scholar 

  15. Peng, C.-C., Magoulas, G.D.: Advanced Adaptive Nonmonotone Conjugate Gradient Training Algorithm for Recurrent Neural Networks. Int’l J. Artificial Intelligence Tools (IJAIT) 17(5), 963–984 (2008)

    Article  Google Scholar 

  16. Peng, C.-C., Magoulas, G.D.: Adaptive Self-scaling Non-monotone BFGS Training Algorithm for Recurrent Neural Networks. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 259–268. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Levenberg, K.: A method for the solution of certain problems in least squares. Quart. Applied Mathematics 5, 164–168 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marquardt, D.: An algorithm for least squares estimation of nonlinear parameters. J. Society for Industrial and Applied Mathematics 11(2), 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks 5, 989–993 (1994)

    Article  Google Scholar 

  20. Ampazis, N., Perantonis, S.J.: Two highly efficient second-order algorithms for training feedforward networks. IEEE Trans. Neural Networks 13, 1064–1074 (2002)

    Article  Google Scholar 

  21. Magoulas, G.D., Chen, S.Y., Dimakopoulos, D.: A personalised interface for web directories based on cognitive styles. In: Stary, C., Stephanidis, C. (eds.) UI4ALL 2004. LNCS, vol. 3196, pp. 159–166. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. McLeod, P., Plunkett, K., Rolls, E.T.: Introduction to connectionist modelling of cognitive processes, pp. 148–151. Oxford University Press, Oxford (1998)

    Google Scholar 

  23. Plaut, D., McClelland, J., Seidenberg, M., Patterson, K.: Understanding normal and impaired reading: computational principles in quasi-regular domains. Psychological Review 103, 56–115 (1996)

    Article  Google Scholar 

  24. Waibel, A.: Modular construction of time-delay neural networks for speech recognition. Neural Computation 1(1), 39–46 (1989)

    Article  Google Scholar 

  25. Waibel, A., Hanazawa, T., Hilton, G., Shikano, K., Lang, K.J.: Phoneme recognition using time-delay neural networks. IEEE Transactions on Acoustics, Speech, and Signal Processing 37, 328–339 (1989)

    Article  Google Scholar 

  26. Elman, J.L.: Finding structure in time. Cognitive Science 14, 179–211 (1990)

    Article  Google Scholar 

  27. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing, Boston (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peng, CC., Magoulas, G.D. (2009). Nonmonotone Learning of Recurrent Neural Networks in Symbolic Sequence Processing Applications. In: Palmer-Brown, D., Draganova, C., Pimenidis, E., Mouratidis, H. (eds) Engineering Applications of Neural Networks. EANN 2009. Communications in Computer and Information Science, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03969-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03969-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03968-3

  • Online ISBN: 978-3-642-03969-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics