Neural Network Based Damage Detection of Dynamically Loaded Structures | SpringerLink
Skip to main content

Neural Network Based Damage Detection of Dynamically Loaded Structures

  • Conference paper
Engineering Applications of Neural Networks (EANN 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 43))

  • 1455 Accesses

Abstract

The aim of the paper is to describe a methodology of damage detection which is based on artificial neural networks in combination with stochastic analysis. The damage is defined as a stiffness reduction (bending or torsion) in certain part of a structure. The key stone of the method is feed-forward multilayer network. It is impossible to obtain appropriate training set for real structure in usage, therefore stochastic analysis using numerical model is carried out to get training set virtually. Due to possible time demanding nonlinear calculations the effective simulation Latin Hypercube Sampling is used here. The important part of identification process is proper selection of input information. In case of dynamically loaded structures their modal properties seem to be proper input information as those are not dependent on actual loading (traffic, wind, temperature). The methodology verification was carried out using laboratory beam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wenzel, H., Pichler, D.: Ambient vibration monitoring. John Wiley & Sons Ltd, West Sussex (2005)

    Book  Google Scholar 

  2. Salgado, R., Cruz, P.J.S., Ramos, L.F., Lourenço, P.B.: Comparison between damage detection methods applied to beam structures. In: Third International Conference on Bridge Maintenance Safety and Management, Porto, Portugal, CD-ROM (2006)

    Google Scholar 

  3. Koh, B.H., Dyke, S.J.: Structural health monitoring for flexible bridge structures using correlation and sensitivity of modal data. Computers and Structures 85, 117–130 (2007)

    Article  Google Scholar 

  4. Spencer Jr., B.F., Gao, Y., Yang, G.: Distributed computing strategy for damage monitoring employing smart sensors. In: Shenzhen, C., Ou, L., Duan (eds.) Structural Health Monitoring and Intelligent Infrastructure, pp. 35–47. Taylor & Francis Group, London (2005)

    Google Scholar 

  5. Feltrin, G.: Temperature and damage effects on modal parameters of a reinforced concrete bridge. In: 5th European Conference on Structural Dynamics (EURODYN), Munich, Germany (2002)

    Google Scholar 

  6. Link, M.: Updating of analytical models – basic procedures and extensions. In: Silva, J.M.M., Maia, N.M.M. (eds.) Modal Analysis and Testing. NATO Science Series. Kluwer Academic Publ, Dordrecht (1999)

    Google Scholar 

  7. Teughels, A., Maeck, J., De Roeck, G.: Damage assessment by FE model updating using damage functions. Computers and Structures 80(25), 1869–1879 (2002)

    Article  Google Scholar 

  8. Deix, S., Geier, R.: Updating FE-models using experimental modal analysis for damage detection and system identification in civil structures. In: Third European Conference on Structural Control (3ECSC). Vienna University of Technology, Vienna (2004)

    Google Scholar 

  9. Fang, X., Luo, H., Tang, J.: Structural damage detection using neural network with learning rate improvement. Computers and Structures 83, 2150–2161 (2005)

    Article  Google Scholar 

  10. Huth, O., Feltrin, G., Maeck, J., Kilic, N., Motavalli, M.: Damage identification using modal data: Experiences on a prestressed concrete bridge. Journal of Structural Engineering, ASCE 131(12), 1898–1910 (2005)

    Article  Google Scholar 

  11. Strauss, A., Lehký, D., Novák, D., Bergmeister, K., Santa, U.: Probabilistic response identification and monitoring of concrete structures. In: Third European Conference on Structural Control (3ECSC). Vienna University of Technology, Vienna (2004)

    Google Scholar 

  12. Strauss, A., Bergmeister, K., Lehký, D., Novák, D.: Inverse statistical FEM analysis – vibration based damage identification of concrete structures. In: International Conference on Bridges, Dubrovnik, Croatia, pp. 461–470 (2006)

    Google Scholar 

  13. Novák, D., Lehký, D.: ANN Inverse Analysis Based on Stochastic Small-Sample Training Set Simulation. Engineering Application of Artificial Intelligence 19, 731–740 (2006)

    Article  Google Scholar 

  14. Novák, D., Lehký, D.: Inverse analysis based on small-sample stochastic training of neural network. In: 9th International Conference on Engineering Applications of Neural Networks (EAAN2005), Lille, France, pp. 155–162 (2005)

    Google Scholar 

  15. Lehký, D., Novák, D.: Probabilistic inverse analysis: Random material parameters of reinforced concrete frame. In: 9th International Conference on Engineering Applications of Neural Networks (EAAN2005), Lille, France, pp. 147–154 (2005)

    Google Scholar 

  16. Strauss, A., Bergmeister, K., Novák, D., Lehký, D.: Stochastische Parameteridentifikation bei Konstruktionsbeton für die Betonerhaltung. Beton und Stahlbetonbau 99(12), 967–974 (2004)

    Article  Google Scholar 

  17. Frantík, P., Lehký, D., Novák, D.: Modal properties study for damage identification of dynamically loaded structures. In: The Third International Conference on Structural Engineering, Mechanics and Computation, Cape Town, South Africa, pp. 703–704 (2007)

    Google Scholar 

  18. Lehký, D., Novák, D., Frantík, P., Strauss, A., Bergmeister, K.: Dynamic damage identification of Colle Isarco viaduct. In: 4th International Conference on Bridge Maintenance, Safety and Management (IABMAS 2008), Seoul, Korea, pp. 2549–2556 (2008)

    Google Scholar 

  19. Armon, D., Ben-Haim, Y., Braun, S.: Crack detection in beams by rank-ordering of eigenfrequencies shifts. Mechanical Systems and Signal Processing 8(1), 81–91 (1994)

    Article  Google Scholar 

  20. Kůrková, V.: Kolmogorov’s theorem and multilayer neural networks. Neural Networks 5(3), 501–506 (1992)

    Article  Google Scholar 

  21. Šnorek, M.: Neuronové sítě a neuropočítače (Neural networks and neurocomputers). Vydavatelství ČVUT, Prague, Czech Republic (2002) (in Czech)

    Google Scholar 

  22. McKay, M.D., Conover, W.J., Beckman, R.J.: A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics 21, 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  23. Novák, D., Teplý, B., Keršner, Z.: The role of Latin Hypercube Sampling method in reliability engineering. In: Proc. of ICOSSAR 1997, Kyoto, Japan, pp. 403–409 (1998)

    Google Scholar 

  24. Singh, V., Gupta, I., Gupta, H.O.: ANN-based estimator for distillation using Levenberg-Marquardt approach. Engineering Applications of Artificial Intelligence 20, 249–259 (2007)

    Article  Google Scholar 

  25. Schwefel, H.P.: Numerical optimization for computer models. Wiley, Chichester (1991)

    Google Scholar 

  26. Novák, D., Vořechovský, M., Rusina, R.: FReET v.1.5 – program documentation. Userś and Theory Guides. Brno/Červenka Consulting, Czech Republic (2008), http://www.freet.cz

  27. Lehký, D.: DLNNET – program documentation. Theory and User’s Guides, Brno, Czech Republic (in preparation, 2009)

    Google Scholar 

  28. Sofistik, A.G.: SOFiSTiK Analysis Programs, version 21.0, Oberschleissheim, Germany (2004), http://www.sofistik.com

  29. Lehký, D.: Relid – program documentation. User’s Guide, Brno, Czech Republic (in preparation, 2009)

    Google Scholar 

  30. Lehký, D., Novák, D., Frantík, P., Strauss, A., Bergmeister, K.: Dynamic damage identification based on artificial neural networks, SARA – part IV. In: The 3rd International Conference on Structural Health Monitoring of Intelligent Infrastructure, Vancouver, British Columbia, Canada, vol. 183 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lehký, D., Novák, D. (2009). Neural Network Based Damage Detection of Dynamically Loaded Structures. In: Palmer-Brown, D., Draganova, C., Pimenidis, E., Mouratidis, H. (eds) Engineering Applications of Neural Networks. EANN 2009. Communications in Computer and Information Science, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03969-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03969-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03968-3

  • Online ISBN: 978-3-642-03969-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics