Abstract
Point matching is crucial for many computer vision applications. Establishing the correspondence between a large number of data points is a computationally intensive process. Some point matching related applications, such as medical image registration, require real time or near real time performance if applied to critical clinical applications like image assisted surgery. In this paper, we report a new multicore platform based parallel algorithm for fast point matching in the context of landmark based medical image registration. We introduced a non-regular data partition algorithm which utilizes the K-means clustering algorithm to group the landmarks based on the number of available processing cores, which optimize the memory usage and data transfer. We have tested our method using the IBM Cell Broadband Engine (Cell/B.E.) platform. The results demonstrated a significant speed up over its sequential implementation. The proposed data partition and parallelization algorithm, though tested only on one multicore platform, is generic by its design. Therefore the parallel algorithm can be extended to other computing platforms, as well as other point matching related applications.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Medical Image Analysis 2(1), 1–36 (1998)
Hill, D.L.G., Batchelor, P.G., Holden, M., Hawkes, D.J.: Medical image registration. Physical Medical Biology 46, 1–45 (1998)
Lester, H., Arridge, S.R.: A survey of hierarchical non-linear medical image registration. Pattern Recognition 32(1), 129–149 (1999)
Zitova, B., Flusser, J.: Image registration methods: A survey. Image Vision Computing 21(11), 977–1000 (2003)
Cena, B., Fox, N., Rees, J.: Fluid deformation of serial structural MRI for low-grade glioma growth analysis. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 1055–1056. Springer, Heidelberg (2004)
Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: A viscous fluid model for multimodal non-rigid image registration using mutual information. Medical Image Analysis 7(4), 565–575 (2003)
Thirion, J.P.: Image matching as a diffusion process: An analogy with Maxwell demons. Medical Image Analysis 2(3), 243–260 (1998)
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Non-parametric diffeomorphic image registration with the demons algorithm. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 319–326. Springer, Heidelberg (2007)
Szeliski, R., Szeliski, R., Coughlan, J., Coughlan, J.: Hierarchical spline-based image registration. International Journal of Computer Vision, 194–201 (1994)
Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. of the ACM 24, 381–395 (1981)
Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding 89(2), 114–141 (2003)
Levi, K., Weiss, Y.: Learning object detection from a small number of examples: the importance of good features. In: Proc. IEEE International Conference on Computer Vision and Pattern Recognition, Washington, DC, vol. 2, pp. 53–60 (2004)
Kahle, J.A., Day, M.N., Hofstee, H.P., Johns, C.R., Maeurer, T.R., Shippy, D.: Introduction to the cell multiprocessor. IBM J. Res. Develop. 49(4), 589–604 (2005)
Chen, T., Raghavan, R., Dale, J.N., Iwata, E.: Cell broadbank engine architecture and its first implementation - a performance review. IBM J. Res. Develop. 51(5), 559–572 (2007)
ITK Software Guide: http://www.itk.org
MedINRIA: http://www-sop.inria.fr/asclepios/software/medinria/
Nanda, A.K., Moulic, J.R., Hanson, R.E., Goldrian, G., Day, M.N., D’Amora, B.D., Kesavarapu, S.: Cell/B.E. blades: Building blocks for scalable, read-time, interactive and digital media servers. IBM J. Res. Develop. 51(5), 573–582 (2007)
Chrisochoides, N., Fedorov, A., Kot, A., Archip, N., Black, P., Clatz, O., Golby, A., Kikinis, R., Warfield, S.: Toward real-time, image guided neurosurgery using distributed and grid computing. In: ACM/IEEE Super Computing (2006)
Warfield, S.K., Jolesz, F., Kikinis, R.: A high performance approach to the registration of medical imaging data. Parallel Computing 24(9), 1345–1368 (1998)
Ohara, M., Yeo, H., Savino, F., Gong, L., Inoue, H., Sheinin, V., Daijavad, S., Erickson, B.: Realtime murual information based linear registration on the cell broadbank engine processor. In: Proc. International Symposium on Biomedical Imaging (2007)
Buehrer, G., Parthasarathy, S., Goyder, M.: Data mining on the cell broadband engine. In: International Conference on Supercomputing, pp. 26–35 (2008)
Duan, R., Strey, A.: Data mining algorithms on the cell broadband engine. In: Luque, E., Margalef, T., Benítez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 665–675. Springer, Heidelberg (2008)
Gedik, B., Bordawekar, R.R., Yu, P.S.: Cellsort: high performance sorting on the cell processor. In: The 33rd international conference on very large databases, pp. 1286–1297 (2007)
Varbanescu, A.L., van Amesfoort, A.S., Cornwell, T., Mattingly, A., Elmegreen, B.G., van Nieuwpoort, R.V., van Diepen, G., Sips, H.J.: Radioastronomy image synthesis on the cell/B.E. In: Luque, E., Margalef, T., Benítez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 749–762. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, L., Gong, L., Zhang, H., Nosher, J.L., Foran, D.J. (2009). A Parallel Point Matching Algorithm for Landmark Based Image Registration Using Multicore Platform. In: Sips, H., Epema, D., Lin, HX. (eds) Euro-Par 2009 Parallel Processing. Euro-Par 2009. Lecture Notes in Computer Science, vol 5704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03869-3_86
Download citation
DOI: https://doi.org/10.1007/978-3-642-03869-3_86
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03868-6
Online ISBN: 978-3-642-03869-3
eBook Packages: Computer ScienceComputer Science (R0)