Arguing from Experience to Classifying Noisy Data | SpringerLink
Skip to main content

Arguing from Experience to Classifying Noisy Data

  • Conference paper
Data Warehousing and Knowledge Discovery (DaWaK 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5691))

Included in the following conference series:

Abstract

A process, based on argumentation theory, is described for classifying very noisy data. More specifically a process founded on a concept called “arguing from experience” is described where by several software agents “argue” about the classification of a new example given individual “case bases” containing previously classified examples. Two “arguing from experience” protocols are described: PADUA which has been applied to binary classification problems and PISA which has been applied to multi-class problems. Evaluation of both PADUA and PISA indicates that they operate with equal effectiveness to other classification systems in the absence of noise. However, the systems out-perform comparable systems given very noisy data. Keywords: Classification, Argumentation, Noisy data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Proc. SIGMOD Conf., pp. 207–216. ACM Press, New York (1993)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proc. ACM SIGMOD Conf on Management of Data (SIGMOD 2000), pp. 439–450. ACM Press, New York (2000)

    Chapter  Google Scholar 

  3. Bench-Capon, T.: Neural Nets and Open Texture. In: Fourth International Conference on AI and Law, pp. 292–297. ACM Press, Amsterdam (1993)

    Google Scholar 

  4. Bench-Capon, T., Coenen, F.: An Experiment in Discovering Association Rules in the Legal Domain. In: DEXA 2000, pp. 1056–1060. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

  5. Bendou, M., Munteanu, P.: Learning Bayesian networks from noisy data. In: Proc. ICEIS, pp. 26–33 (2003)

    Google Scholar 

  6. Brodley, C., Friedl, M.: Identifying and eliminating mislabeled training instances. In: AAAI/IAAI, vol. 1 (1996)

    Google Scholar 

  7. Clark, P., Niblett, T.: The CN2 induction algorithm. In: Machine Learning, vol. 3(4), pp. 261–283 (1989)

    Google Scholar 

  8. Clark, P., Boswell, R.: Rule Induction with CN2: Some Recent Improvements. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482, pp. 51–163. Springer, Heidelberg (1991)

    Google Scholar 

  9. Coenen, F., Leng, P.H., Ahmed, S.: Data structure for association rule mining: T-trees and p-trees. IEEE Trans. Knowl. Data Eng. 16(6), 774–778 (2004)

    Article  Google Scholar 

  10. Coenen, F., Leng, P.: Obtaining Best Parameter Values for Accurate Classification. In: Proc. ICDM 2005, pp. 597–600. IEEE, Los Alamitos (2005)

    Google Scholar 

  11. Coenen, F., Leng, P., Ahmed, S.: Data Structures for association Rule Mining: T-trees and P-trees. IEEE Transactions on Data and Knowledge Engineering 16(6), 774–778 (2004)

    Article  Google Scholar 

  12. Coenen, F., Leng, P., Goulbourne, G.: Tree Structures for Mining Association Rules. Journal of Data Mining and Knowledge Discovery 8(1), 25–51 (2004)

    Article  MathSciNet  Google Scholar 

  13. John, G.H.: Robust decision trees: Removing outliers from databases. In: Proc. 1st Int Conf on Knowledge Discovery and Data Mining (KDD 1995), pp. 174–179. AIII Press (1995)

    Google Scholar 

  14. Johnston, B., Governatori, G.: Induction of Defeasible Logic Theories in the Legal Domain. In: Proc. 9th Int. Conf. on AI and Law, pp. 204–213. ACM Press, Edinburgh (2003)

    Google Scholar 

  15. Kubica, J., Moore, A.: Probabilistic noise identification and data cleaning. Technical Report CMU-RI-TR-02-26, CMU (2002)

    Google Scholar 

  16. Liu, B., Hsu, W., Ma, Y.: Integrating Classification and Association Rule Mining. In: Proc KDD 1998, pp. 80–86. AAAI, New York (1998)

    Google Scholar 

  17. Li, W., Han, J., Pei, J.: CMAR: Accurate and Efficient Classification Based on Multiple Class-Association Rules. In: Proc ICDM, pp. 369–376 (2001)

    Google Scholar 

  18. Mozina, M., Zabkar, J., Bench-Capon, T., Bratko, I.: Argument based machine learning applied to law. Artificial Intelligence 13(1), 53–73 (2005)

    Google Scholar 

  19. Prakken, H.: Formal systems for persuasion dialogue. Knowledge Eng. Review 21(2), 163 (2006)

    Article  Google Scholar 

  20. Quinlan, J.: Simplifying decision trees. Man-Machine Studies 27(3), 221–234 (1987)

    Article  Google Scholar 

  21. Quinlan, J., Cameron-Jones, R.: FOIL: A Midterm Report. In: ECML, pp. 3–20 (1993)

    Google Scholar 

  22. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco (1998)

    Google Scholar 

  23. Schwarm, S., Wolfman, S.: Cleaning data with Bayesian methods (2000)

    Google Scholar 

  24. Teng, C.M.: Correcting Noisy Data. Machine Learning (1999)

    Google Scholar 

  25. Wardeh, M., Bench-Capon, T., Coenen, F.P.: Arguments from experience: The PADUA protocol. In: Proc. COMMA, Frontiers in AI and Apps., vol. (172), pp. 405–416. IOS Press, Amsterdam (2008)

    Google Scholar 

  26. Wardeh, M., Bench-Capon, T., Coenen, F.P.: PISA: Pooling Information from Several Agents: Multiplayer Argumentation from Experience. In: Proc. AI 2008, pp. 133–146. Springer, Heidelberg (2008)

    Google Scholar 

  27. Yin, X., Han, J.: CPAR: Classification based on Predictive Association Rules. In: Proc. SIAM, pp. 331–335 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wardeh, M., Coenen, F., Bench-Capon, T. (2009). Arguing from Experience to Classifying Noisy Data. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2009. Lecture Notes in Computer Science, vol 5691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03730-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03730-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03729-0

  • Online ISBN: 978-3-642-03730-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics