Abstract
Pattern spectra have frequently been used in image analysis. A drawback is that they are not sensitive to changes in spatial distribution of features. Various methods have been proposed to address this problem. In this paper we compare several of these on both texture classification and image retrieval. Results show that Size Density Spectra are most versatile, and least sensitive to parameter settings.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Maragos, P.: Pattern spectrum and multiscale shape representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 701–716 (1989)
Ayala, G., Domingo, J.: Spatial size distributions: Applications to shape and texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 23(12), 1430–1442 (2001)
Wilkinson, M.H.F.: Generalized pattern spectra sensitive to spatial information. In: ICPR 2002: Proceedings of the 16th International Conference on Pattern Recognition, vol. 1, pp. 21–24. IEEE Computer Society, Los Alamitos (2002)
Zingman, I., Meir, R., El-Yaniv, R.: Size-density spectra and their application to image classification. Pattern Recogn. 40(12), 3336–3348 (2007)
Braga-Neto, U., Goutsias, J.: Object-based image analysis using multiscale connectivity. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 892–907 (2005)
Cheng, F., Venetsanopoulos, A.N.: An adaptive morphological filter for image processing. IEEE Trans. Image Proc. 1, 533–539 (1992)
Meijster, A., Wilkinson, M.H.F.: A comparison of algorithms for connected set openings and closings. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 484–494 (2002)
Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 272–285 (2007)
Breen, E.J., Jones, R.: Attribute openings, thinnings, and granulometries. Comput. Vis. Image Underst. 64(3), 377–389 (1996)
Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions in Information Theory IT-8, 179–187 (1962)
Ronse, C.: Erosion of narrow image features by combination of local low rank and max filters. In: Proc. Int. Conf. Image Proc. 1986, London, pp. 77–81 (1986)
Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (COIL-20). Technical Report CUCS-005-96, Columbia University (1996)
Tushabe, F., Wilkinson, M.H.F.: Content-based image retrieval using combined 2D attribute pattern spectra. In: In Working Notes of the 2007 CLEF Workshop (2007), http://www.clef-campaign.org/2007/working_notes/TushabeCLEF2007.pdf
Grubinger, M., Clough, P., Hanbury, A., Müller, H.: Overview of the ImageCLEFphoto 2007 photographic retrieval task. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 433–444. Springer, Heidelberg (2007)
Tushabe, F., Wilkinson, M.H.F.: Content-based image retrieval using combined 2D attribute pattern spectra. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 554–561. Springer, Heidelberg (2008)
Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation and information retrieval. IEEE Trans. Image Proc. 9(4), 561–576 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Land, S., Wilkinson, M.H.F. (2009). A Comparison of Spatial Pattern Spectra. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds) Mathematical Morphology and Its Application to Signal and Image Processing. ISMM 2009. Lecture Notes in Computer Science, vol 5720. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03613-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-03613-2_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03612-5
Online ISBN: 978-3-642-03613-2
eBook Packages: Computer ScienceComputer Science (R0)