A Comparison of Spatial Pattern Spectra | SpringerLink
Skip to main content

Abstract

Pattern spectra have frequently been used in image analysis. A drawback is that they are not sensitive to changes in spatial distribution of features. Various methods have been proposed to address this problem. In this paper we compare several of these on both texture classification and image retrieval. Results show that Size Density Spectra are most versatile, and least sensitive to parameter settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Maragos, P.: Pattern spectrum and multiscale shape representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 701–716 (1989)

    Article  MATH  Google Scholar 

  2. Ayala, G., Domingo, J.: Spatial size distributions: Applications to shape and texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 23(12), 1430–1442 (2001)

    Article  Google Scholar 

  3. Wilkinson, M.H.F.: Generalized pattern spectra sensitive to spatial information. In: ICPR 2002: Proceedings of the 16th International Conference on Pattern Recognition, vol. 1, pp. 21–24. IEEE Computer Society, Los Alamitos (2002)

    Google Scholar 

  4. Zingman, I., Meir, R., El-Yaniv, R.: Size-density spectra and their application to image classification. Pattern Recogn. 40(12), 3336–3348 (2007)

    Article  MATH  Google Scholar 

  5. Braga-Neto, U., Goutsias, J.: Object-based image analysis using multiscale connectivity. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 892–907 (2005)

    Article  Google Scholar 

  6. Cheng, F., Venetsanopoulos, A.N.: An adaptive morphological filter for image processing. IEEE Trans. Image Proc. 1, 533–539 (1992)

    Article  Google Scholar 

  7. Meijster, A., Wilkinson, M.H.F.: A comparison of algorithms for connected set openings and closings. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 484–494 (2002)

    Article  Google Scholar 

  8. Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 272–285 (2007)

    Article  Google Scholar 

  9. Breen, E.J., Jones, R.: Attribute openings, thinnings, and granulometries. Comput. Vis. Image Underst. 64(3), 377–389 (1996)

    Article  Google Scholar 

  10. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions in Information Theory IT-8, 179–187 (1962)

    MATH  Google Scholar 

  11. Ronse, C.: Erosion of narrow image features by combination of local low rank and max filters. In: Proc. Int. Conf. Image Proc. 1986, London, pp. 77–81 (1986)

    Google Scholar 

  12. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (COIL-20). Technical Report CUCS-005-96, Columbia University (1996)

    Google Scholar 

  13. Tushabe, F., Wilkinson, M.H.F.: Content-based image retrieval using combined 2D attribute pattern spectra. In: In Working Notes of the 2007 CLEF Workshop (2007), http://www.clef-campaign.org/2007/working_notes/TushabeCLEF2007.pdf

  14. Grubinger, M., Clough, P., Hanbury, A., Müller, H.: Overview of the ImageCLEFphoto 2007 photographic retrieval task. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 433–444. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Tushabe, F., Wilkinson, M.H.F.: Content-based image retrieval using combined 2D attribute pattern spectra. In: Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 554–561. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation and information retrieval. IEEE Trans. Image Proc. 9(4), 561–576 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Land, S., Wilkinson, M.H.F. (2009). A Comparison of Spatial Pattern Spectra. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds) Mathematical Morphology and Its Application to Signal and Image Processing. ISMM 2009. Lecture Notes in Computer Science, vol 5720. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03613-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03613-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03612-5

  • Online ISBN: 978-3-642-03613-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics