Abstract
This paper introduces a new fuzzy c-mean objective function called Kernel induced Fuzzy C-Means based Gaussian Function for the purpose of segmentation of brain medical images. It obtains effective methods for calculating memberships and updating prototypes by minimizing the new objective function of Gaussian based fuzzy c-means. The performance of proposed algorithm has been tested with synthetic image and then it has been implemented for segmenting the brain [18] medical images to reduce the inhomogeneities and to allow the labeling of a pixel (voxel) to be influenced by the labels in its immediate neighborhood. Also this paper compares the results of proposed method with the results of existing basic Fuzzy C-Means.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. on Medical Imaging 21, 193–199 (2002)
Al-Sultan, K.S., Selim, S.Z.: A Global Algorithm for the Fuzzy Clustering Problem. Pattern Recognition 26(9), 1357–1361 (1993)
Al-Sultan, K.S., Fedjki, C.A.: A Tabu Search-based Algorithm for the Fuzzy Clustering Problem. Pattern Recognition 30(12), 2023–2030 (1997)
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)
Bezdek, J.C., Pal, S.K. (eds.): Fuzzy Models for Pattern Recognition. IEEE Press, New York (1992)
Bezdek, J.C., Hall, L.O., Clarke, L.P.: Review of MR image segmentation techniques using pattern recognition. Med. Phys. 20, 1033–1048 (1993)
Brand, M.E., Bohan, T.P., Kramer, L.A.: Estimation of CSF and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images. Comput. Med. Imaging Graph. 18, 25–34 (1994)
Carvalho, B.M., Gau, J.C., Herman, G.T., Kong, Y.: Algorithms for Fuzzy Segmentation. Pattern Analysis & Applications 2(1), 73–81 (1999)
Clark, M.C., Hall, L.O., Goldgof, D.B., Velthuizen, R., Murtagh, F.R., Silbiger, M.S.: Automatic tumor-segmentation using knowledge-based techniques. IEEE Transactions on Medical Imaging 117, 187–201 (1998)
Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Journal of Cybernetics 3, 32–57 (1973)
Fletcher-Heath, L.M., Hall, L.O., Goldgof, D.B., Murtagh, F.R.: Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artifical Intelligence in Medicine 21, 43–63 (2001)
Gering, D.T., Grimson, W.E.L., Kikinis, R.: Recognizing deviations from normalcy for brain tumor segmentation. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 388–395. Springer, Heidelberg (2002)
Hall, L.O., Bensaid, A.M., Clarke, L.P., Velthuizen, R.P., Silbiger, M.S., Bezdek, J.C.: A Comparison of Neural Network and Fuzzy Clustering Techniques in Segmenting Magnetic Resonance Images of the Brain. IEEE Trans. Neural Networks. 3(5), 672–682 (1992)
Xue, J.-H., Pizurica, A., Philips, W., Kerre, E., Walle, R.V., Lemahieu, I.: An Integrated Method of Adaptive Enhancement for Unsupervised Segmentation of MRI Brain Images. Pattern Recognition Letters 24(15), 2549–2560 (2003)
Krishnan, N., Nelson Kennedy Babu, C.V., Joseph Rajapandian, V., Richard Devaraj, N.: A Fuzzy Image Segmentation using Feedforward Neural Networks with Supervised Learning. In: Proceedings of the International Conference on Cognition and Recognition, pp. 396–402
Kwon, M.J., Han, Y.J., Shin, I.H., Park, H.W.: Hierarchical fuzzy segmentation of brain MR images. Int. J. Imaging Systems and Technology. 13, 115–125 (2003)
Li, X., Li, L., Lu, H., Chen, D., Liang, Z.: Inhomogeneity correction for magnetic resonance images with fuzzy C-mean algorithm. In: Proc. SPIE, vol. 5032, pp. 995–1005 (2003)
Li, C.L., Goldgof, D.B., Hall, L.O.: Knowledge-based classification and tissue labeling of MR images of human brain. IEEE Trans. Med. Imag. 12(4), 740–750 (1993)
Liew, A.W.C., Leung, S.H., Lau, W.H.: Fuzzy image clustering incorporating spatial continuity. IEE Proc. Visual Image Signal Process. 147, 185–192 (2000)
Clark, M.C., Hall, L.O., Goldgof, D.B., Clarke, L.P., Velthuizen, R.P., Silbigger, M.S.: MRI Segmentation using fuzzy clustering Techniques. IEEE Engineering in Medicine and Biology 13(5), 730–742 (1994)
Moussaoui, A., Benmahammed, K., Ferahta, N., Chen, V.: A New MR Brain Image Segmentation Using an Optimal Semisupervised Fuzzy C-means and pdf Estimation. Electronic Letters on Computer Vision and Image Analysis 5(4), 1–11 (2005)
Noordam, J.C., van den Broek, W.H.A.M., Buydens, L.M.C.: Geometrically guided fuzzy C-means clustering for multivariate image segmentation. In: Proc. Int. Conf. on Pattern Recognition, vol. 1, pp. 462–465 (2000)
Pham, D.L., Prince, J.L.: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. Medical Imaging. 18, 737–752 (1999)
Runkler, T.A., Bezdek, J.C.: Alternating cluster estimation: A new tool for clustering and function approximation. IEEE Trans. on Fuzzy Systems. 7(4), 377–393 (1999)
Ruspini, E.H.: A New Approach to Clustering. Information and Control 15(1), 22–32 (1969)
Ruspini, E.H.: Numerical methods for fuzzy clustering. Inform. Sci. 2, 319–350 (1970)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kannan, S.R., Sathya, A., Ramathilagam, S., Pandiyarajan, R. (2009). New Robust Fuzzy C-Means Based Gaussian Function in Classifying Brain Tissue Regions. In: Ranka, S., et al. Contemporary Computing. IC3 2009. Communications in Computer and Information Science, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03547-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-03547-0_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03546-3
Online ISBN: 978-3-642-03547-0
eBook Packages: Computer ScienceComputer Science (R0)