A Modified Differential Evolution Algorithm with Cauchy Mutation for Global Optimization | SpringerLink
Skip to main content

A Modified Differential Evolution Algorithm with Cauchy Mutation for Global Optimization

  • Conference paper
Contemporary Computing (IC3 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 40))

Included in the following conference series:

  • 1177 Accesses

Abstract

Differential Evolution (DE) is a powerful yet simple evolutionary algorithm for optimization of real valued, multi modal functions. DE is generally considered as a reliable, accurate and robust optimization technique. However, the algorithm suffers from premature convergence, slow convergence rate and large computational time for optimizing the computationally expensive objective functions. Therefore, an attempt to speed up DE is considered necessary. This research introduces a modified differential evolution (MDE), a modification to DE that enhances the convergence rate without compromising with the solution quality. In Modified differential evolution (MDE) algorithm, if an individual fails in continuation to improve its performance to a specified number of times then new point is generated using Cauchy mutation. MDE on a test bed of functions is compared with original DE. It is found that MDE requires less computational effort to locate global optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Storn, R., Price, K.: DE-a simple and efficient adaptive scheme for global optimization over continuous space, Technical Report TR-95-012, ICSI (March 1995), ftp.icsi.berkeley.edu/pub/techreports/1995/tr-95-012.ps.Z

  2. Paterlini, S., Krink, T.: High performance clustering with differential evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2, pp. 2004–2011 (2004)

    Google Scholar 

  3. Omran, M., Engelbrecht, A., Salman, A.: Differential evolution methods for unsupervised image classification. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2, pp. 966–973 (2005a)

    Google Scholar 

  4. Storn, R.: Differential evolution design for an IIR-filter with requirements for magnitude and group delay. Technical Report TR-95-026, International Computer Science Institute, Berkeley, CA (1995)

    Google Scholar 

  5. Vesterstroem, J., Thomsen, R.: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. Proc. Congr. Evol. Comput. 2, 1980–1987 (2004)

    Google Scholar 

  6. Andre, J., Siarry, P., Dognon, T.: An improvement of the standard genetic algorithm fighting premature convergence in continuous optimization. Advance in Engineering Software 32, 49–60 (2001)

    Article  Google Scholar 

  7. Hrstka, O., Ku˘cerová, A.: Improvement of real coded genetic algorithm based on differential operators preventing premature convergence. Advance in Engineering Software 35, 237–246 (2004)

    Article  Google Scholar 

  8. Lampinen, J., Zelinka, I.: On stagnation of the differential evolution algorithm. In: Ošmera, P. (ed.) Proc. of MENDEL 2000, 6th International Mendel Conference on Soft Computing, pp. 76–83 (2000)

    Google Scholar 

  9. Zaharie, D.: Control of population diversity and adaptation in differential evolution algorithms. In: Matousek, D., Osmera, P. (eds.) Proc. of MENDEL 2003, 9th International Conference on Soft Computing, Brno, Czech Republic, pp. 41–46 (2003)

    Google Scholar 

  10. Abbass, H.: The self-adaptive pareto differential evolution algorithm. In: Proc. of the 2002 Congress on Evolutionary Computation, pp. 831–836 (2002)

    Google Scholar 

  11. Omran, M., Salman, A., Engelbrecht, A.P.: Self-adaptive differential evolution. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3801, pp. 192–199. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Brest, J., Greiner, S., Boškovic, B., Mernik, M., Žumer, V.: Self-adapting Control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)

    Article  Google Scholar 

  13. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution. IEEE Transactions on Evolutionary Computation 12(1), 64–79 (2008)

    Article  Google Scholar 

  14. Chakraborty, U.K. (ed.): Advances in Differential Evolution. Springer, Heidelberg (2008)

    Google Scholar 

  15. Price, K.: An introduction to DE. In: Corne, D., Marco, D., Glover, F. (eds.) New Ideas in Optimization, pp. 78–108. McGraw-Hill, London (1999)

    Google Scholar 

  16. Stacey, A., Jancie, M., Grundy, I.: Particle swarm optimization with mutation. In: Proceeding of IEEE congress on evolutionary computation, pp. 1425–1430 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ali, M., Pant, M., Singh, V.P. (2009). A Modified Differential Evolution Algorithm with Cauchy Mutation for Global Optimization. In: Ranka, S., et al. Contemporary Computing. IC3 2009. Communications in Computer and Information Science, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03547-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03547-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03546-3

  • Online ISBN: 978-3-642-03547-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics