Using Sensor Noise to Identify Low Resolution Compressed Videos from YouTube | SpringerLink
Skip to main content

Using Sensor Noise to Identify Low Resolution Compressed Videos from YouTube

  • Conference paper
Computational Forensics (IWCF 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5718))

Included in the following conference series:

Abstract

The Photo Response Non-Uniformity acts as a digital fingerprint that can be used to identify image sensors. This characteristic has been used in previous research to identify scanners, digital photo cameras and digital video cameras. In this paper we use a wavelet filter from Lukáš et al [1] to extract the PRNU patterns from multiply compressed low resolution video files originating from webcameras after they have been uploaded to YouTube. The video files were recorded with various resolutions, and the resulting video files were encoded with different codecs. Depending on video characteristics (e.g. codec quality settings, recording resolution), it is possible to correctly identify cameras based on these videos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lukáš, J., Fridrich, J., Goljan, M.: Digital Camera Identification from Sensor Pattern Noise. IEEE Trans. on Information Forensics and Security 1, 205–214 (2006)

    Article  Google Scholar 

  2. Geradts, Z., Bijhold, J., Kieft, M., Kurosawa, K., Kuroki, K., Saitoh, N.: Methods for Identification of Images Acquired with Digital Cameras. In: Proc. SPIE, vol. 4232 (2001)

    Google Scholar 

  3. Alles, E.J., Geradts, Z.J.M.H., Veenman, C.J.: Source Camera Identification for Low Resolution Heavily Compressed Images. In: Int. Conf on Computational Sciences and Its Applications, 2008. ICCSA 2008, pp. 557–567 (2008)

    Google Scholar 

  4. Chen, M., Fridrich, J., Goljan, M.: Digital Imaging Sensor Identification (Further Study). In: Proceedings of the SPIE, Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505, p. 65050P (2007)

    Google Scholar 

  5. Chen, M., Fridrich, J., Goljan, M., Lukáš, J.: Determining Image Origin and Integrity Using Sensor Noise. IEEE Trans. on Information Forensics and Security 3(1), 74–90 (2008)

    Article  Google Scholar 

  6. Khanna, N., Mikkilineni, A.K., Chiu, G.T.C., Allebach, J.P., Delp, E.J.: Scanner Identification Using Sensor Pattern Noise. In: Proc. SPIE, Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505, p. 65051K (2007)

    Google Scholar 

  7. Gou, H., Swaminathan, A., Wu, M.: Robust Scanner Identification Based on Noise Features. In: Proc. SPIE, Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505, p. 65050S (2007)

    Google Scholar 

  8. Chen, M., Fridrich, J., Goljan, M., Lukáš, J.: Source Digital Camcorder Identification using Sensor Photo Response Non-Uniformity. In: Proc. SPIE, vol. 6505 (2007)

    Google Scholar 

  9. Mihçak, M.K., Kozintsev, I., Ramchandran, K.: Spatially Adaptive Statistical Modeling of Wavelet Image Coefficients and its Application to Denoising. In: Proc. IEEE Int. Conf. Acoust. Speech, and Signal Proc., pp. 3253–3256 (1999)

    Google Scholar 

  10. Johnson, M.K., Farid, H.: Exposing digital forgeries through chromatic aberration. MM&Sec 2006. In: Proceedings of the Multimedia and Security Workshop 2006, Geneva, Switzerland, September 26-27, pp. 48–55 (2006)

    Google Scholar 

  11. Van, L.T., Emmanuel, S., Kankanhalli, M.S.: Identifying Source Cell Phone Using Chromatic Aberration. In: Proceedings of the 2007 IEEE International Conference on Multimedia and EXPO (ICME 2007), pp. 883–886 (2007)

    Google Scholar 

  12. Holst, G.C., Lomheim, T.S.: CMOS / CCD Sensors and Camera Systems. JCD Publishing and SPIE Press (2007)

    Google Scholar 

  13. Irie, K., McKinnon, A.E., Unsworth, K., Woodhead, I.M.: A Model for Measurement of Noise in CCD Digital-Video Cameras. Measurement Science and Technology 19, 45207 (2008)

    Article  Google Scholar 

  14. Loudon, R.: Quantum Theory of Light. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  15. Tian, H., Fowler, B.A., El Gamal, A.: Analysis of Temporal Noise in CMOS APS. In: Proc. SPIE Vol. 3649, Sensors, Cameras, and Systems for Scientific/Industrial Applications, pp. 177–185 (1999)

    Google Scholar 

  16. Salama, K., El Gamal, A.: Analysis of Active Pixel Sensor Readout Circuit. IEEE Trans. on Circuits and Systems I, 941–945 (2003)

    Article  Google Scholar 

  17. El Gamal, A., Fowler, B., Min, H., Liu, X.: Modeling and Estimation of FPN Components in CMOS Image Sensors. In: Morley, M.M. (ed.) Proc. SPIE, Solid State Sensor Arrays: Development and Applications II, vol. 3301, pp. 168–177 (1998)

    Google Scholar 

  18. Gloe, T., Kirchner, M., Winkler, A., Böhme, R.: Can We Trust Digital Image Forensics? In: Proc. of 15th International Conference on Multimedia, pp. 79–86 (2007)

    Google Scholar 

  19. Ferrero, A., Campos, J., Pons, A.: Correction of Photoresponse Nonuniformity for Matrix Detectors Based on Prior Compensation for Their Nonlinear Behavior. Applied Optics 45(11) (2006)

    Google Scholar 

  20. Bayram, S., Sencar, H.T., Memon, N., Avcıbaş, İ.: Source Camera Identification Based on CFA Interpolation. In: ICIP 2005, vol. 3, pp. 69–72 (2005)

    Google Scholar 

  21. Long, Y., Huang, Y.: Image Based Source Camera Identification using Demosaicking. In: IEEE 8th Workshop on Multimedia Signal Processing, October 3-6, pp. 419–424 (2006)

    Google Scholar 

  22. Donoho, D.L., Johnstone, I.M.: Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika 81, 425–455 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaiser, G.: A Friendly Guide to Wavelets. Birkhauser Boston Inc, Basel (1994)

    MATH  Google Scholar 

  24. Donoho, D., Maleki, A., Shahram, M.: WaveLab 850, http://www-stat.stanford.edu/~wavelab/

  25. van der Mark, M., van Houten, W., Geradts, Z.: NFI PRNUCompare, http://prnucompare.sourceforge.net

  26. FFmpeg, free program to convert audio and video, http://www.ffmpeg.org

  27. Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press (1999)

    Google Scholar 

  28. Chang, S.G., Yu, B., Vetterli, M.: Adaptive Wavelet Thresholding for Image Denoising and Compression. IEEE Trans. on Image Processing 9, 1532–1546 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Goljan, M., Fridrich, J., Filler, T.: Large Scale Test of Sensor Fingerprint Camera Identification. In: Proc. SPIE, Electronic Imaging, Security and Forensics of Multimedia Contents XI, San Jose, CA, January 18-22 (2009)

    Google Scholar 

  30. Bayram, S., Sencar, H.T., Memon, N.: Improvements on Source Camera-Model Identification Based on CFA Interpolation. In: Proc. WG 11.9 Intl. Conf. on Digital Forensics (2006)

    Google Scholar 

  31. Çeliktutan, O., Avcıbaş, İ., Sankur, B.: Blind Identification of Cellular Phone Cameras. In: Proceedings of the SPIE, Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505, p. 65051H (2007)

    Google Scholar 

  32. Virtualdub: A free AVI/MPEG-1 processing utility, http://www.virtualdub.org

  33. MSN Webcam Recorder, http://ml20rc.msnfanatic.com/

  34. Goljan, M., Fridrich, J.: Camera Identification from Cropped and Scaled Images. In: Proc. SPIE, Electronic Imaging, Forensics, Security, Steganography, and Watermarking of Multimedia Contents X, January 26-31, pp. OE-1–OE-13. San Jose (2008)

    Google Scholar 

  35. Çeliktutan, O., Sankur, B., Avcıbaş, İ.: Blind Identification of Source Cell-phone Model. IEEE Trans. on Information Forensics and Security 3, 553–566 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Houten, W., Geradts, Z. (2009). Using Sensor Noise to Identify Low Resolution Compressed Videos from YouTube. In: Geradts, Z.J.M.H., Franke, K.Y., Veenman, C.J. (eds) Computational Forensics. IWCF 2009. Lecture Notes in Computer Science, vol 5718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03521-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03521-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03520-3

  • Online ISBN: 978-3-642-03521-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics