Abstract
Cryptographic protocols can only be secure under certain inequality assumptions. Axiomatizing these inequalities explicitly is problematic: stating too many inequalities may impair soundness of the verification approach. To address this issue, we investigate an alternative approach (based on first-order logic) that does not require inequalities to be axiomatized. A derivation of the negated security property exhibits a protocol attack, and absence of a derivation amounts to absence of the investigated kind of attack.
We establish a fragment of FOL strictly greater than Horn formulas in which the approach is sound. We then show how to use finite model generation in this context to prove the absence of attacks. To demonstrate its practicality, the approach is applied to several well-known protocols, including ones relying on non-trivial algebraic properties. We show that it can be used to deal with infinitely many principals (and thus sessions).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Journal of Computer Security 6(1-2), 85–128 (1998)
Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
Weidenbach, C.: Towards an automatic analysis of security protocols in first-order logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS, vol. 1632, pp. 314–328. Springer, Heidelberg (1999)
Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In: CSFW-14, pp. 82–96. IEEE Computer Society, Los Alamitos (2001)
Jürjens, J.: A domain-specific language for cryptographic protocols based on streams. Journal of Logic and Algebraic Programming (JLAP) (2009)
Blanchet, B.: From secrecy to authenticity in security protocols. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 342–359. Springer, Heidelberg (2002)
Comon, H., Nieuwenhuis, R.: Induction = I-axiomatization + first-order consistency. Technical report, ENS Cachan (1998)
Steel, G., Bundy, A., Maidl, M.: Attacking a protocol for group key agreement by refuting incorrect inductive conjectures. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS, vol. 3097, pp. 137–151. Springer, Heidelberg (2004)
Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)
Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. London Math. Soc. Lect. Note Ser., vol. 189. Cambridge University Press, Cambridge (1994)
Jürjens, J.: On a problem of Gabriel and Ulmer. Journal of Pure and Applied Algebra 158, 183–196 (2001)
Schumann, J.: Automatic verification of cryptographic protocols with SETHEO. In: CADE (1999)
Comon-Lundh, H., Cortier, V.: Security properties: two agents are sufficient. Sci. Comput. Program. 50(1-3), 51–71 (2004)
Cohen, E.: First-order verification of cryptographic protocols. Journal of Computer Security 11(2), 189–216 (2003)
Lassez, J.L., Maher, M.J., Marriott, K.: Elimination of negation in term algebras. In: Tarlecki, A. (ed.) MFCS 1991. LNCS, vol. 520, pp. 1–16. Springer, Heidelberg (1991)
Comon, H., Fernández, M.: Negation elimination in equational formulae. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629. Springer, Heidelberg (1992)
Weber, T.: SAT-based Finite Model Generation for Higher-Order Logic. PhD thesis, Technische Universität München (2008)
RSA Laboratories: PKCS #1: RSA Cryptography Standard Version 2.1. (June 2002)
Institute of Electrical and Electronics Engineers: IEEE Std 802.11-1997 (1997)
Lowe, G.: An attack on the Needham-Schroeder public key authentication protocol. Information Processing Letters 56(3), 131–136 (1995)
Sutcliffe, G., Suttner, C.B.: The TPTP problem library: CNF release v1.2.1. Journal of Automated Reasoning 21(2), 177–203 (1998)
Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model finding. In: CADE, Workshop W4 (2003)
Sutcliffe, G.: System on TPTP, http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP (accessed January 9, 2009)
Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)
Bellare, M., Rogaway, P.: The exact security of digital signatures: How to sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)
Lindenberg, C., Wirt, K.: SHA1, RSA, PSS and more. In: Klein, G., Nipkow, T., Paulson, L. (eds.) The Archive of Formal Proofs (May 2005), http://afp.sourceforge.net/entries/RSAPSS.shtml , Formal proof development
Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in cryptographic protocols. Journal of Computer Security 14(1), 1–43 (2006)
Borisov, N., Goldberg, I., Wagner, D.: Intercepting mobile communications: The insecurity of 802.11. In: MOBICOM, pp. 180–188 (2001)
Selinger, P.: Models for an adversary-centric protocol logic. Electr. Notes Theor. Comput. Sci. 55(1) (2001)
Goubault-Larrecq, J.: Towards producing formally checkable security proofs, automatically. In: Computer Security Foundations (CSF), pp. 224–238 (2008)
Jürjens, J.: Security analysis of crypto-based java programs using automated theorem provers. In: ASE, pp. 167–176. IEEE Computer Society, Los Alamitos (2006)
Jürjens, J.: Secure information flow for concurrent processes. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 395–409. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jürjens, J., Weber, T. (2009). Finite Models in FOL-Based Crypto-Protocol Verification. In: Degano, P., Viganò, L. (eds) Foundations and Applications of Security Analysis. ARSPA-WITS 2009. Lecture Notes in Computer Science, vol 5511. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03459-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-03459-6_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03458-9
Online ISBN: 978-3-642-03459-6
eBook Packages: Computer ScienceComputer Science (R0)