Neurocognitive Approach to Clustering of PubMed Query Results | SpringerLink
Skip to main content

Neurocognitive Approach to Clustering of PubMed Query Results

  • Conference paper
Advances in Neuro-Information Processing (ICONIP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5507))

Included in the following conference series:

Abstract

Internet literature queries return a long lists of citations, ordered according to their relevance or date. Query results may also be represented using Visual Language that takes as input a small set of semantically related concepts present in the citations. First experiments with such visualization have been done using PubMed neuronal plasticity citations with manually created semantic graphs. Here neurocognitive inspirations are used to create similar semantic graphs in an automated fashion. This way a long list of citations is changed to small semantic graphs that allow semi-automated query refinement and literature based discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duch, W., Matykiewicz, P., Pestian, J.: Neurolinguistic approach to natural language processing with applications to medical text analysis. Neural Networks (in press, 2008), doi:10.1016/j.neunet.2008.05.008

    Google Scholar 

  2. Buzan, T.: The Mind Map Book. Penguin Books (2000)

    Google Scholar 

  3. Farrand, P., Hussain, F., Hennessy, E.: The efficacy of the mind map study technique. Medical Education 36(5), 426–431 (2002)

    Article  Google Scholar 

  4. Kraft, R., Zien, J.: Mining anchor text for query refinement. In: Proceedings of the 13th international conference on World Wide Web, pp. 666–674. ACM, New York (2004)

    Google Scholar 

  5. Gordon, M.D., Lindsay, R.K.: Toward discovery support systems: a replication, re-examination, and extension of swanson’s work on literature-based discovery of a connection between raynaud’s and fish oil. J. Am. Soc. Inf. Sci. 47(2), 116–128 (1996)

    Article  Google Scholar 

  6. Zender, P.M., Crutcher, K.A.: Visualizing alzheimer’s disease research: a classroom collaboration of design and science. In: SIGGRAPH 2004: ACM SIGGRAPH 2004 Educators program, p. 24. ACM, New York (2004)

    Chapter  Google Scholar 

  7. Zender, M., Crutcher, K.A.: Visual language for the expression of scientific concepts. Visible Language 41, 23–49 (2007)

    Google Scholar 

  8. Duch, W., Szymaski, J.: Semantic web: Asking the right questions. In: Gen, M., Zhao, X., Gao, J. (eds.) Series of Information and Management Sciences, California Polytechnic State University, CA, USA, pp. 456–463 (2008)

    Google Scholar 

  9. Pedrycz, W.: Knowledge-Based Clustering: From Data to Information Granules. Wiley Interscience, Hoboken (2005)

    Book  MATH  Google Scholar 

  10. U.S. National Library of Medicine, National Institutes of Health: Unified medical language system (January 2007), http://www.nlm.nih.gov/research/umls/

  11. Zender, M.: Advancing icon design for global non verbal communication: Or what does the word bow mean? Visible Language 40, 177–206 (2006)

    Google Scholar 

  12. McNamara, T.P.: Semantic Priming: Perspectives From Memory and Word Recognition. Psychology Press, Taylor & Francis Group (2005)

    Google Scholar 

  13. Duch, W., Matykiewicz, P., Pestian, J.: Towards Understanding of Natural Language: Neurocognitive Inspirations. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4669, pp. 953–962. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Duch, W., Matykiewicz, P., Pestian, J.: Neurolinguistic approach to vector representation of medical concepts. In: Press, I. (ed.) Proc. of the 20th Int. Joint Conference on Neural Networks (IJCNN), August 2007, p. 1808 (2007)

    Google Scholar 

  15. Jurasinski, G.: simba: A Collection of functions for similarity calculation of binary data, R package version 0.2-5 (2007)

    Google Scholar 

  16. Legendre, P., Legendre, L.: Numerical Ecology. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  17. Anderberg, M.R.: Cluster Analysis for Applications. Academic Press, New York (1973)

    MATH  Google Scholar 

  18. Milligan, G.W.: An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika 45, 325–342 (1980)

    Article  Google Scholar 

  19. Walesiak, M., Dudek, A.: clusterSim: Searching for optimal clustering procedure for a data set, R package version 0.36-1 (2008)

    Google Scholar 

  20. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1, 224–227 (1979)

    Article  Google Scholar 

  21. Calinski, R.B., Harabasz, J.: A dendrite method for cluster analysis. Communications in Statistics 3, 1–27 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  22. Milligan, G.W., Cooper, M.C.: An examination of procedures of determining the number of cluster in a data set. Psychometrika 50, 159–179 (1985)

    Article  Google Scholar 

  23. Kaufman, L., Rousseeuw, P.J.: Finding groups in data: an introduction to cluster analysis. Wiley, New York (1990)

    Book  MATH  Google Scholar 

  24. Hotho, A., Staab, S., Stumme, G.: Wordnet improves text document clustering. In: Proc. of the Semantic Web Workshop at SIGIR-2003, 26th Annual International ACM SIGIR Conference (2003)

    Google Scholar 

  25. Sedding, J., Kazakov, D.: Wordnet-based text document clustering. In: Pallotta, V., Todirascu, A. (eds.) COLING 2004 3rd Workshop on Robust Methods in Analysis of Natural Language Data, Geneva, Switzerland, August 2004, pp. 104–113 (2004)

    Google Scholar 

  26. Struble, C.A., Dharmanolla, C.: Clustering mesh representations of biomedical literature. In: Lynette, H., James, P. (eds.) HLT-NAACL 2004 Workshop: BioLINK 2004, Linking Biological Literature, Ontologies and Databases, May 2004, pp. 41–48. Association for Computational Linguistics, Boston (2004)

    Google Scholar 

  27. Yoo, I., Hu, X., Song, I.-Y.: A coherent biomedical literature clustering and summarization approach through ontology-enriched graphical representations. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 374–383. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Jing, L., Zhou, L., Ng, M.K., Huang, J.Z.: Ontology-based distance measure for text clustering. In: Proceedings of the IV Workshop on Text Mining; VI SIAM International Conference on Data Mining (April 2006)

    Google Scholar 

  29. Kreher, D., Holocomb, P., Goff, D., Kuperberg, G.: Neural evidence for faster and further automatic spreading activation in schizophrenic thought disorder. Schizophrenia bulletin 34, 473–482 (2008)

    Article  Google Scholar 

  30. Matykiewicz, P., Duch, W., Pestian, J.: Nonambiguous concept mapping in medical domain. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 941–950. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  31. Kohonen, T., Kaski, S., Lagus, K., Salojrvi, J., Paatero, V., Saarela, A.: Organization of a massive document collection. IEEE Transactions on Neural Networks 11(3), 574–585 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matykiewicz, P., Duch, W., Zender, P.M., Crutcher, K.A., Pestian, J.P. (2009). Neurocognitive Approach to Clustering of PubMed Query Results. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03040-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03040-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03039-0

  • Online ISBN: 978-3-642-03040-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics