Real-Time Embedded EEG-Based Brain-Computer Interface | SpringerLink
Skip to main content

Real-Time Embedded EEG-Based Brain-Computer Interface

  • Conference paper
Advances in Neuro-Information Processing (ICONIP 2008)

Abstract

Online artifact rejection, feature extraction, and pattern recognition are essential to advance the Brain Computer Interface (BCI) technology so as to be practical for real-world applications. The goals of BCI system should be a small size, rugged, lightweight, and have low power consumption to meet the requirements of wearability, portability, and durability. This study proposes and implements a moving-windowed Independent Component Analysis (ICA) on a battery-powered, miniature, embedded BCI. This study also tests the embedded BCI on simulated and real EEG signals. Experimental results indicated that the efficacy of the online ICA decomposition is comparable with that of the offline version of the same algorithm, suggesting the feasibility of ICA for online analysis of EEG in a BCI. To demonstrate the feasibility of the wearable embedded BCI, this study also implements an online spectral analysis to the resultant component activations to continuously estimate subject’s task performance in near real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kachenoura, A., Albera, L., Senhadji, L., Comon, P.: ICA: A Potential Tool for BCI Systems. IEEE Signal Processing Magazine 25(1), 57–68 (2008)

    Article  Google Scholar 

  2. Kalcher, J., Flotzinger, D., Neuper, C., Gölly, S., Pfurtscheller, G.: Graz brain–computer interface II: Toward communication between humans and computers based on online classification of three different EEG patterns. Med. Biol. Eng. Comput. 34, 382–388 (1996)

    Article  Google Scholar 

  3. Comon, P.: Independent component analysis, a new concept? Signal Process 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  4. Jung, T.P., Humphries, C., Lee, T.W., Makeig, S., McKeown, M.J., Iragui, V., Sejnowski, T.J.: Extended ICA removes artifacts from electroencephalographic recordings. Advances in Neural Information Process Systems 10, 894–900 (1998)

    Google Scholar 

  5. Vigário, R., Särelä, J., Jousmäki, V., Hämäläinen, M., Oja, E.: Independent Component Approach to the Analysis of EEG and MEG Recordings. IEEE Transactions on Biomedical Engineering 47(5), 589–593 (2000)

    Article  Google Scholar 

  6. Jung, T.P., Makeig, S., Lee, T.W., McKeown, M.J., Brown, G., Bell, A.J., Sejnowski, T.J.: Independent component analysis of biomedical signals. In: Proceedings of the 2nd International Workshop on Independent Component Analysis and Blind Signal Separation, pp. 633–644 (2000)

    Google Scholar 

  7. Hill, N.J., Lal, T.N., Bierig, K., Birbaumer, N., Scholkopf, B.: Attentional modulation of auditory event-related potentials in a brain-computer interface. In: Proc. IEEE Int. Workshop Biomedical Circuits and Systems, Singapore, pp. 17–20 (2004)

    Google Scholar 

  8. Kamousi, B., Liu, Z., He, B.: Classification of Motor Imagery Tasks for Brain-Computer Interface Applications by Means of Two Equivalent Dipoles Analysis. IEEE Trans. on Neural Systems and Rehabilitation Engineering 13(2), 166–171 (2005)

    Article  Google Scholar 

  9. James, C.J., Wang, S.: Blind source separation in single-channel EEG analysis: An application to BCI. In: Proc. 28th Annu. Int.Conf. IEEE Engineering in Medicine and Biology Society, New York, USA, August 2006, pp. 6544–6547 (2006)

    Google Scholar 

  10. Lee, T.W., Girolami, M., Sejnowski, T.J.: Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources. Neural Computation 11, 606–633 (1999)

    Article  Google Scholar 

  11. Lin, C.T., Wu, R.C., Liang, S.F., Chao, W.H., Chen, Y.J., Jung, T.P.: EEG-based drowsiness estimation for safety driving using independent component analysis. IEEE Transactions on Circuits and Systems I 52(12), 2726–2738 (2005)

    Article  Google Scholar 

  12. Makeig, S., Jung, T.P.: Tonic, phasic, and transient EEG correlates of auditory awareness in drowsiness. Cognitive Brain Research 4, 15–25 (1996)

    Article  Google Scholar 

  13. Makeig, S., Jung, T.P., Sejnowski, T.J.: Awareness during drowsiness: dynamics and electrophysiological correlates. Canadian Journal of Experimental Psychology 54, 266–273 (2000)

    Article  Google Scholar 

  14. Schier, M.A.: Changes in EEG alpha power during simulated driving: a demonstration. International Journal of Psychophysiology 37, 155–162 (2000)

    Article  Google Scholar 

  15. Joutsiniemi, S.L., Kaski, S., AndreoLarsen, T.: Self-organizing map in recognition of topographic patterns of EEG spectra. IEEE Transactions on Biomedical engineering 42(11), 1062–1068 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ko, LW. et al. (2009). Real-Time Embedded EEG-Based Brain-Computer Interface. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03040-6_126

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03040-6_126

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03039-0

  • Online ISBN: 978-3-642-03040-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics