Abstract
This paper empirically compares six background correction methods aimed at removing unspecific background noise of the overall signal level measured by a scanner across microarrays. Using three published cDNA microarray datasets we investigated the effect of background correction on cancer classification in terms of the predictive performance of two classifiers (k-NN and support vector machine with linear kernel) induced from microarray data where a particular background correction method is applied, individually and in combination with a single-bias or double-bias-removal normalization method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bolstad, B.: Low Level Analysis of High-density Oligonucleotide Array Data: Background, Normalization and Summarization. PhD Dissertation. University of California, Berkeley (2004)
Edwards, D.: Non-linear normalization and background correction in one-channel cDNA microarray studies. Bioinformatics 19(7), 825–833 (2003)
Mierswa, I., Wurst, M., Klinkenberg, R., et al.: YALE: Rapid Prototyping for Complex Data Mining Tasks. In: Proc. of the 12th ACM SIGKDD (2006)
Ritchie, M.E., Silver, J., Oshlack, A., Holmes, M., Diyagama, D., Holloway, A., Smyth, G.K., et al.: A comparison of background correction methods for two colour microarrays. Bioinformatics 23(20) (2007)
Stanford Microarray Database, http://genome-www5.stanford.edu/
Schena, M., Shaon, D., Heller, R., Chai, A., Brown, P., Davis, R., et al.: Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proceedings of the National Academy of Sciences of USA 93 (1996)
Yang, Y.H., Buckley, M.J., Speed, T.P.: Analysis of cDNA microarray images. Brief Bioinform 2, 341–349 (2001)
Wu, W., Xing, E., Myers, C., Mian, I.S., Bissel, M.J., et al.: Evaluation of normalization methods for cDNA microarray data by k-NN classification. BMC Bioinformatics 6, 191 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Freitas, A., Castillo, G., Marcos, A.S. (2009). Effect of Background Correction on Cancer Classification with Gene Expression Data. In: Combi, C., Shahar, Y., Abu-Hanna, A. (eds) Artificial Intelligence in Medicine. AIME 2009. Lecture Notes in Computer Science(), vol 5651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02976-9_59
Download citation
DOI: https://doi.org/10.1007/978-3-642-02976-9_59
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02975-2
Online ISBN: 978-3-642-02976-9
eBook Packages: Computer ScienceComputer Science (R0)