Effect of Background Correction on Cancer Classification with Gene Expression Data | SpringerLink
Skip to main content

Effect of Background Correction on Cancer Classification with Gene Expression Data

  • Conference paper
Artificial Intelligence in Medicine (AIME 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5651))

Included in the following conference series:

Abstract

This paper empirically compares six background correction methods aimed at removing unspecific background noise of the overall signal level measured by a scanner across microarrays. Using three published cDNA microarray datasets we investigated the effect of background correction on cancer classification in terms of the predictive performance of two classifiers (k-NN and support vector machine with linear kernel) induced from microarray data where a particular background correction method is applied, individually and in combination with a single-bias or double-bias-removal normalization method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bolstad, B.: Low Level Analysis of High-density Oligonucleotide Array Data: Background, Normalization and Summarization. PhD Dissertation. University of California, Berkeley (2004)

    Google Scholar 

  2. Edwards, D.: Non-linear normalization and background correction in one-channel cDNA microarray studies. Bioinformatics 19(7), 825–833 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. Mierswa, I., Wurst, M., Klinkenberg, R., et al.: YALE: Rapid Prototyping for Complex Data Mining Tasks. In: Proc. of the 12th ACM SIGKDD (2006)

    Google Scholar 

  4. Ritchie, M.E., Silver, J., Oshlack, A., Holmes, M., Diyagama, D., Holloway, A., Smyth, G.K., et al.: A comparison of background correction methods for two colour microarrays. Bioinformatics 23(20) (2007)

    Google Scholar 

  5. Stanford Microarray Database, http://genome-www5.stanford.edu/

  6. Schena, M., Shaon, D., Heller, R., Chai, A., Brown, P., Davis, R., et al.: Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proceedings of the National Academy of Sciences of USA 93 (1996)

    Google Scholar 

  7. Yang, Y.H., Buckley, M.J., Speed, T.P.: Analysis of cDNA microarray images. Brief Bioinform 2, 341–349 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Wu, W., Xing, E., Myers, C., Mian, I.S., Bissel, M.J., et al.: Evaluation of normalization methods for cDNA microarray data by k-NN classification. BMC Bioinformatics 6, 191 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freitas, A., Castillo, G., Marcos, A.S. (2009). Effect of Background Correction on Cancer Classification with Gene Expression Data. In: Combi, C., Shahar, Y., Abu-Hanna, A. (eds) Artificial Intelligence in Medicine. AIME 2009. Lecture Notes in Computer Science(), vol 5651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02976-9_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02976-9_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02975-2

  • Online ISBN: 978-3-642-02976-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics