Prediction of Mechanical Lung Parameters Using Gaussian Process Models | SpringerLink
Skip to main content

Prediction of Mechanical Lung Parameters Using Gaussian Process Models

  • Conference paper
Artificial Intelligence in Medicine (AIME 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5651))

Included in the following conference series:

Abstract

Mechanical ventilation can cause severe lung damage by inadequate adjustment of the ventilator. We introduce a Machine Learning approach to predict the pressure-dependent, non-linear lung compliance, a crucial parameter to estimate lung protective ventilation settings. Features were extracted by fitting a generally accepted lumped parameter model to time series data obtained from ARDS (adult respiratory distress syndrome) patients. Numerical prediction was performed by use of Gaussian processes, a probabilistic, non-parametric modeling approach for non-linear functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Matamis, D., Lemaire, F., Harf, A., Brun-Buisson, C., Ansquer, J.C., Atlan, G.: Total respiratory pressure-volume curves in the adult respiratory distress syndrome. Chest 86, 58–66 (1984)

    Article  CAS  PubMed  Google Scholar 

  2. Jonson, B., Beydon, L., Brauer, K., Mansson, C., Valind, S., Grytzell, H.: Mechanics of respiratory system in healthy anesthetized humans with emphasis on viscoelastic properties. J. Appl. Physiol. 75, 132–140 (1993)

    CAS  PubMed  Google Scholar 

  3. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, MA (2006)

    Google Scholar 

  4. Stahl, C.A., Möller, K., Schumann, S., Kuhlen, R., Sydow, M., Putensen, C., Guttmann, J.: Dynamic versus static respiratory mechanics in acute lung injury and acute respiratory distress syndrome. Crit. Care Med. 34, 2090–2098 (2006)

    Article  PubMed  Google Scholar 

  5. Ganzert, S., Guttmann, J., Kersting, K., Kuhlen, R., Putensen, C., Sydow, M., Kramer, S.: Analysis of respiratory pressure-volume curves in intensive care medicine using inductive machine learning. Artif. Intell. Med. 26, 69–86 (2002)

    Article  PubMed  Google Scholar 

  6. Quinlan, J.R.: Learning with continuous classes. In: Proceedings of the Australian Joint Conference on Artificial Intelligence, pp. 343–348. World Scientific, Singapore (1992)

    Google Scholar 

  7. Ganzert, S., Kramer, S., Möller, K., Steinmann, D., Guttmann, J.: Prediction of mechanical lung parameters using Gaussian process models. Technical report, TUM-I0911, Fakultät für Informatik, TU München (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ganzert, S., Kramer, S., Möller, K., Steinmann, D., Guttmann, J. (2009). Prediction of Mechanical Lung Parameters Using Gaussian Process Models. In: Combi, C., Shahar, Y., Abu-Hanna, A. (eds) Artificial Intelligence in Medicine. AIME 2009. Lecture Notes in Computer Science(), vol 5651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02976-9_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02976-9_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02975-2

  • Online ISBN: 978-3-642-02976-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics