Canonical Constructive Systems | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5607))

Abstract

We define the notions of a canonical inference rule and a canonical constructive system in the framework of strict single-conclusion Gentzen-type systems (or, equivalently, natural deduction systems), and develop a corresponding general non-deterministic Kripke-style semantics. We show that every constructive canonical system induces a class of non-deterministic Kripke-style frames, for which it is strongly sound and complete. This non-deterministic semantics is used to show that such a system always admits a strong form of the cut-elimination theorem, and for providing a decision procedure for such systems.

This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No 809-06).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avron, A.: Simple Consequence Relations. Information and Computation 92, 105–139 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Avron, A.: Gentzen-Type Systems, Resolution and Tableaux. Journal of Automated Reasoning 10, 265–281 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Avron, A.: A Nondeterministic View on Nonclassical Negations. Studia Logica 80, 159–194 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Avron, A.: Non-deterministic Semantics for Families of Paraconsistent Logics. In: Beziau, J.-Y., Carnielli, W., Gabbay, D.M. (eds.) Handbook of Paraconsistency. Studies in Logic, vol. 9, pp. 285–320. College Publications (2007)

    Google Scholar 

  5. Avron, A., Lev, I.: Canonical Propositional Gentzen-Type Systems. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 529–544. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Avron, A., Lev, I.: Non-deterministic Multiple-valued Structures. Journal of Logic and Computation 15, 24–261 (2005)

    Article  MathSciNet  Google Scholar 

  7. Belnap, N.D.: Tonk, Plonk and Plink. Analysis 22, 130–134 (1962)

    Article  Google Scholar 

  8. Ciabattoni, A., Terui, K.: Towards a Semantic Characterization of Cut-Elimination. Studia Logica 82, 95–119 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fernandez, D.: Non-deterministic Semantics for Dynamic Topological Logic. Annals of Pure and Applied Logic 157, 110–121 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gentzen, G.: Investigations into Logical Deduction. In: Szabo, M.E. (ed.) The Collected Works of Gerhard Gentzen, pp. 68–131. North Holland, Amsterdam (1969)

    Google Scholar 

  11. Gurevich, Y., Neeman, I.: The Logic of Infons, Microsoft Research Tech Report MSR-TR-2009-10 (January 2009)

    Google Scholar 

  12. Kripke, S.: Semantical Analysis of Intuitionistic Logic I. In: Crossly, J., Dummett, M. (eds.) Formal Systems and Recursive Functions, pp. 92–129. North-Holland, Amsterdam (1965)

    Chapter  Google Scholar 

  13. Prior, A.N.: The Runabout Inference Ticket. Analysis 21, 38–39 (1960)

    Article  Google Scholar 

  14. Sundholm, G.: Proof theory and Meaning. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 9, pp. 165–198 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avron, A., Lahav, O. (2009). Canonical Constructive Systems. In: Giese, M., Waaler, A. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2009. Lecture Notes in Computer Science(), vol 5607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02716-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02716-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02715-4

  • Online ISBN: 978-3-642-02716-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics