Comparative Concept Similarity over Minspaces: Axiomatisation and Tableaux Calculus | SpringerLink
Skip to main content

Comparative Concept Similarity over Minspaces: Axiomatisation and Tableaux Calculus

  • Conference paper
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5607))

  • 436 Accesses

Abstract

We study the logic of comparative concept similarity \(\mathcal{CSL}\) introduced by Sheremet, Tishkovsky, Wolter and Zakharyaschev to capture a form of qualitative similarity comparison. In this logic we can formulate assertions of the form ”objects A are more similar to B than to C”. The semantics of this logic is defined by structures equipped with distance functions evaluating the similarity degree of objects. We consider here the particular case of the semantics induced by minspaces, the latter being distance spaces where the minimum of a set of distances always exists. It turns out that the semantics over arbitrary minspaces can be equivalently specified in terms of preferential structures, typical of conditional logics. We first give a direct axiomatisation of this logic over Minspaces. We next define a decision procedure in the form of a tableaux calculus. Both the calculus and the axiomatisation take advantage of the reformulation of the semantics in terms of preferential structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alenda, R., Olivetti, N., Schwind, C.: Comparative concept similarity over minspaces: Axiomatisation and tableaux calculus. Technical report (2009), http://arxiv.org/abs/0902.0899

  2. Boolos, G.: The Logic of Provability. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  3. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculus for preference-based conditional logics: Pcl and its extensions. ACM Trans. Comput. Log. 10(3) (2009)

    Google Scholar 

  4. Hustadt, U., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: Automated reasoning about metric and topology. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 490–493. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Kurucz, A., Wolter, F., Zakharyaschev, M.: Modal logics for metric spaces: Open problems. In: Artëmov, S.N., Barringer, H., d’Avila Garcez, A.S., Lamb, L.C., Woods, J. (eds.) We Will Show Them (2), pp. 193–208. College Publications (2005)

    Google Scholar 

  6. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail. Artificial Intelligence 55, 1–60 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lewis, D.: Counterfactuals. Basil Blackwell Ltd., Malden (1973)

    Google Scholar 

  8. Nute, D.: Topics in Conditional Logic. Reidel Publishing Company, Dordrecht (1980)

    MATH  Google Scholar 

  9. Sheremet, M., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: Comparative similarity, tree automata, and diophantine equations. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS, vol. 3835, pp. 651–665. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Sheremet, M., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: A logic for concepts and similarity. J. Log. Comput. 17(3), 415–452 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sheremet, M., Wolter, F., Zakharyaschev, M.: A modal logic framework for reasoning about comparative distances and topology (submitted, 2008)

    Google Scholar 

  12. Stalnaker, R.: A theory of conditionals. In: Rescher, N. (ed.) Studies in Logical Theory, American Philosophical Quarterly. Monograph Series, vol. 2, pp. 98–112. Blackwell, Oxford (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alenda, R., Olivetti, N., Schwind, C. (2009). Comparative Concept Similarity over Minspaces: Axiomatisation and Tableaux Calculus. In: Giese, M., Waaler, A. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2009. Lecture Notes in Computer Science(), vol 5607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02716-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02716-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02715-4

  • Online ISBN: 978-3-642-02716-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics