Abstract
The prime implicate trie (pi-trie) of a logical formula is a tree whose branches are labeled with the prime implicates of the formula. The technology of reduced implicate tries is employed to analyze the structure of pi-tries. Appropriate lemmas and theorems are proved, and an algorithm that builds the pi-trie from a logical formula is developed. Preliminary experimental results are presented.
This research was supported in part by the National Science Foundation under grants IIS-0712849 and IIS-0712752.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bittencourt, G.: Combining syntax and semantics through prime form representation. Journal of Logic and Computation 18, 13–33 (2008)
Coudert, O., Madre, J.: Implicit and incremental computation of primes and essential implicant primes of boolean functions. In: 29th ACM/IEEE Design Automation Conference, pp. 36–39 (1992)
de Kleer, J.: An improved incremental algorithm for computing prime implicants. In: Proc. AAAI-1992, San Jose, CA, pp. 780–785 (1992)
Jackson, P.: Computing prime implicants incrementally. In: Kapur, D. (ed.) CADE 1992. LNCS(LNAI), vol. 607, pp. 253–267. Springer, Heidelberg (1992)
Jackson, P., Pais, J.: Computing prime implicants. In: Stickel, M.E. (ed.) CADE 1990. LNCS(LNAI), vol. 449, pp. 543–557. Springer, Heidelberg (1990)
Kean, A., Tsiknis, G.: An incremental method for generating prime implicants/implicates. Journal of Symbolic Computation 9, 185–206 (1990)
Kean, A., Tsiknis, G.: Assumption based reasoning and clause management systems. Computational Intelligence 8(1), 1–24 (1992)
Manquinho, V.M., Flores, P.F., Silva, J.P.M., Oliveira, A.L.: Prime implicant computation using satisfiability algorithms. In: Proceedings of the IEEE International Conference on Tools with Artificial Intelligence, Newport Beach, USA, November 1997, pp. 232–239 (1997)
Morrison, D.R.: Patricia — practical algorithm to retrieve information coded in alphanumeric. Journal of the ACM 15(4), 514–534 (1968)
Murray, N.V., Rosenthal, E.: Efficient query processing with compiled knowledge bases. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS(LNAI), vol. 3702, pp. 231–244. Springer, Heidelberg (2005)
Murray, N.V., Rosenthal, E.: Efficient query processing with reduced implicate tries. Journal of Automated Reasoning 38(1-3), 155–172 (2007)
Murray, N.V., Rosenthal, E.: Updating reduced implicate tries. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS(LNAI), vol. 4548, pp. 183–198. Springer, Heidelberg (2007)
Ngair, T.: A new algorithm for incremental prime implicate generation. In: Proc. IJCAI-1993, Chambery, France (1993)
Przymusinski, T.C.: An algorithm to compute circumscription. Artificial Intelligence 38, 49–73 (1989)
Ramesh, A., Becker, G., Murray, N.V.: Cnf and dnf considered harmful for computing prime implicants/implicates. Journal of Automated Reasoning 18(3), 337–356 (1997)
Reiter, R., de Kleer, J.: Foundations of assumption-based truth maintenance systems: preliminary report. In: Proc. 6th National Conference on Artificial Intelligence, Seattle, WA, July 12-17, 1987, pp. 183–188 (1987)
Slagle, J.R., Chang, C.L., Lee, R.C.T.: A new algorithm for generating prime implicants. IEEE transactions on Computers C-19(4), 304–310 (1970)
Strzemecki, T.: Polynomial-time algorithm for generation of prime implicants. Journal of Complexity 8, 37–63 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Matusiewicz, A., Murray, N.V., Rosenthal, E. (2009). Prime Implicate Tries . In: Giese, M., Waaler, A. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2009. Lecture Notes in Computer Science(), vol 5607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02716-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-02716-1_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02715-4
Online ISBN: 978-3-642-02716-1
eBook Packages: Computer ScienceComputer Science (R0)