Prime Implicate Tries | SpringerLink
Skip to main content

Abstract

The prime implicate trie (pi-trie) of a logical formula is a tree whose branches are labeled with the prime implicates of the formula. The technology of reduced implicate tries is employed to analyze the structure of pi-tries. Appropriate lemmas and theorems are proved, and an algorithm that builds the pi-trie from a logical formula is developed. Preliminary experimental results are presented.

This research was supported in part by the National Science Foundation under grants IIS-0712849 and IIS-0712752.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bittencourt, G.: Combining syntax and semantics through prime form representation. Journal of Logic and Computation 18, 13–33 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Coudert, O., Madre, J.: Implicit and incremental computation of primes and essential implicant primes of boolean functions. In: 29th ACM/IEEE Design Automation Conference, pp. 36–39 (1992)

    Google Scholar 

  3. de Kleer, J.: An improved incremental algorithm for computing prime implicants. In: Proc. AAAI-1992, San Jose, CA, pp. 780–785 (1992)

    Google Scholar 

  4. Jackson, P.: Computing prime implicants incrementally. In: Kapur, D. (ed.) CADE 1992. LNCS(LNAI), vol. 607, pp. 253–267. Springer, Heidelberg (1992)

    Google Scholar 

  5. Jackson, P., Pais, J.: Computing prime implicants. In: Stickel, M.E. (ed.) CADE 1990. LNCS(LNAI), vol. 449, pp. 543–557. Springer, Heidelberg (1990)

    Google Scholar 

  6. Kean, A., Tsiknis, G.: An incremental method for generating prime implicants/implicates. Journal of Symbolic Computation 9, 185–206 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kean, A., Tsiknis, G.: Assumption based reasoning and clause management systems. Computational Intelligence 8(1), 1–24 (1992)

    Article  Google Scholar 

  8. Manquinho, V.M., Flores, P.F., Silva, J.P.M., Oliveira, A.L.: Prime implicant computation using satisfiability algorithms. In: Proceedings of the IEEE International Conference on Tools with Artificial Intelligence, Newport Beach, USA, November 1997, pp. 232–239 (1997)

    Google Scholar 

  9. Morrison, D.R.: Patricia — practical algorithm to retrieve information coded in alphanumeric. Journal of the ACM 15(4), 514–534 (1968)

    Article  MathSciNet  Google Scholar 

  10. Murray, N.V., Rosenthal, E.: Efficient query processing with compiled knowledge bases. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS(LNAI), vol. 3702, pp. 231–244. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Murray, N.V., Rosenthal, E.: Efficient query processing with reduced implicate tries. Journal of Automated Reasoning 38(1-3), 155–172 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Murray, N.V., Rosenthal, E.: Updating reduced implicate tries. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS(LNAI), vol. 4548, pp. 183–198. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Ngair, T.: A new algorithm for incremental prime implicate generation. In: Proc. IJCAI-1993, Chambery, France (1993)

    Google Scholar 

  14. Przymusinski, T.C.: An algorithm to compute circumscription. Artificial Intelligence 38, 49–73 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ramesh, A., Becker, G., Murray, N.V.: Cnf and dnf considered harmful for computing prime implicants/implicates. Journal of Automated Reasoning 18(3), 337–356 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Reiter, R., de Kleer, J.: Foundations of assumption-based truth maintenance systems: preliminary report. In: Proc. 6th National Conference on Artificial Intelligence, Seattle, WA, July 12-17, 1987, pp. 183–188 (1987)

    Google Scholar 

  17. Slagle, J.R., Chang, C.L., Lee, R.C.T.: A new algorithm for generating prime implicants. IEEE transactions on Computers C-19(4), 304–310 (1970)

    Article  MathSciNet  Google Scholar 

  18. Strzemecki, T.: Polynomial-time algorithm for generation of prime implicants. Journal of Complexity 8, 37–63 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matusiewicz, A., Murray, N.V., Rosenthal, E. (2009). Prime Implicate Tries . In: Giese, M., Waaler, A. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2009. Lecture Notes in Computer Science(), vol 5607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02716-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02716-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02715-4

  • Online ISBN: 978-3-642-02716-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics