Abstract
Hilbert’s concept of formal proof is an ideal of rigour for mathematics which has important applications in mathematical logic, but seems irrelevant for the practice of mathematics. The advent, in the last twenty years, of proof assistants was followed by an impressive record of deep mathematical theorems formally proved. Formal proof is practically achievable. With formal proof, correctness reaches a standard that no pen-and-paper proof can match, but an essential component of mathematics — the insight and understanding — seems to be in short supply. So, what makes a proof understandable? To answer this question we first suggest a list of symptoms of understanding. We then propose a vision of an environment in which users can write and check formal proofs as well as query them with reference to the symptoms of understanding. In this way, the environment reconciles the main features of proof: correctness and understanding.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
AFP. Archive of formal proofs (March 2009), http://afp.sourceforge.net
Aspinall, D.: Proof general: A generic tool for proof development. In: Proceedings of the 6th International Conference on Tools and Algorithms for Construction and Analysis of Systems, pp. 38–42. Springer, Heidelberg (2000)
Audebaud, P., Rideau, L.: TeXMacs as authoring tool for publication and dissemination of formal developments. In: Aspinall, D., Lueth, C. (eds.) User-Interface for Theorem Provers. Electronic Notes in Theoretical Computer Science, vol. 103, pp. 27–48 (2004)
Autexier, S., Benzmüller, C., Dietrich, D., Meier, A., Wirth, C.-P.: A generic modular data structure for proof attempts alternating on ideas and granularity. In: Borwein, J.M., Farmer, W.M. (eds.) MKM 2006. LNCS (LNAI), vol. 4108, pp. 126–142. Springer, Heidelberg (2006)
Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.): AISC 2008, Calculemus 2008, and MKM 2008. LNCS (LNAI), vol. 5144. Springer, Heidelberg (2008)
Autexier, S., Fiedler, A., Neumann, T., Wagner, M.: Supporting user-defined notations when integrating scientific text-editors with proof assistance systems. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 176–190. Springer, Heidelberg (2007)
Autexier, S., Benzmüller, C., Dietrich, D., Wagner, M.: Organisation, transformation, and propagation of mathematical knowledge in Ωmega. Journal of Mathematics in Computer Science (accepted, 2009)
Avigad, J.: Understanding proofs. In: Mancosu, P. (ed.) The Philosophy of Mathematical Practice, pp. 317–353. Oxford University Press, Oxford (2008)
Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifier (URI): Generic Syntax. RFC 3986, Internet Engineering Task Force (2005)
Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development – Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004)
Bourbaki, N.: Theory of Sets. Elements of Mathematics. Springer, Heidelberg (1968)
Bridges, D., Richman, F.: Varieties of Constructive Mathematics. Cambridge University Press, Cambridge (1987)
Bundy, A.: A science of reasoning. In: Lassez, J.L., Plotkin, G. (eds.) Computational Logic – Essays in Honor of A. Robinson, pp. 178–198. MIT Press, Cambridge (1989)
Calude, C.S.: Information and Randomness: An Algorithmic Perspective, 2nd edn. Springer, Heidelberg (2002)
Calude, C.S., Calude, E., Marcus, S.: Passages of proof. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 84, 167–188 (2004)
Calude, C.S., Calude, E., Marcus, S.: Proving and programming. In: Calude, C. (ed.) Randomness and Complexity, From Leibniz to Chaitin, pp. 310–321. World Scientific, Singapore (2007)
Calude, C.S., Dinneen, M.J.: Exact approximations of Omega numbers. Int. Journal of Bifurcation & Chaos 17(6), 1937–1954 (2007)
Calude, C.S., Marcus, S.: Mathematical proofs at a crossroad? In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol. 3113, pp. 15–28. Springer, Heidelberg (2004)
Calude, C.S., Hay, N.J.: Every Computably Enumerable Random Real Is Provably Computably Enumerable Random. Research Report of CDMTCS-328 (July 2008)
Chaitin, G.J.: The Limits of Mathematics. Springer, Heidelberg (1998)
Chaitin, G.J.: Meta Math! Pantheon (2005)
Cheikhrouhou, L., Sorge, V.: PDS – a three-dimensional data structure for proof plans. In: Proceedings of the International Conference on Artificial and Computational Intelligence for Decision, Control and Automation in Engineering and Industrial Applications (ACIDCA 2000), pp. 144–149 (2000)
Cohen, P.J.: Set Theory and the Continuum Hypothesis. Addison-Wesley, Reading (1966)
Cooper, S.B.: Computability Theory. Chapman &Hall/CRC (2004)
Feferman, S., Dawson Jr., J., Kleene, S.C., Moore, G.H., Solovay, R.M., van Heijenoort, J., Velleman, D.J. (eds.): Kurt Gödel Collected Works. Oxford University Press, Oxford (1986)
Fiedler, A.: User-adaptive Proof Explanation. PhD Thesis, Universität des Saarlandes, Saarbrücken, Germany (2001)
Giceva, J.: Capturing Rhetorical Aspects in Mathematical Documents using OMDoc and SALT. Technical Report, Jacobs University, Germany (2008)
Goguen, J.A.: Realization is universal. Theory of Computing Systems 6(4), 359–374 (1973)
Gonthier, G.: Formal proof – The Four-Color Theorem. Notices of the AMS (11), 1382–1393 (2008)
Gowers, T.: Mathematics. A Very Short Introduction. Oxford University Press, Oxford (2002)
Granas, A., Dugundji, J.: Fixed Point Theory. Springer, Heidelberg (2003)
Hales, T.C.: Formal proof. Notices of the AMS (11), 1370–1380 (2008)
Harrison, J.: Formal proof – theory and practice. Notices of the AMS (11), 1395–1406 (2008)
Hay, N.J.: Formal Proof for the Kraft-Chaitin Theorem (March 2009), http://www.cs.auckland.ac.nz/~nickjhay/KraftChaitin.thy
Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Documents [version 1.2]. LNCS, vol. 4180. Springer, Heidelberg (2006)
Kohlhase, M.: XSLT Stylesheet for converting OMDoc documents into XHTML (January 2008), http://kwarc.info/projects/xslt
Lane, S.M.: Despite physicists, proof is essential in mathematics. Synthese 111(2), 147–154 (1997)
Lange, C.: SWiM – a semantic wiki for mathematical knowledge management. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 832–837. Springer, Heidelberg (2008)
Leedham-Green, C.: Personal communication to C. Müller, March 7 (2009)
Loomis, E.S.: The Pythagorean Proposition, 2nd edn. Oxford University Press, Oxford (1968)
Manin, Y.I.: Mathematics as Metaphor. American Mathematical Society (2007)
Manola, F., Miller, E.: RDF Primer. W3C Recommendation, World Wide Web Consortium (February 2004)
Melis, E., Whittle, J.: Analogy in inductive theorem proving. Journal of Automated Reasoning 22(2), 117–147 (1999)
Mizar (March 2009), http://web.cs.ualberta.ca/~piotr/Mizar
Müller, C., Kohlhase, M.: Panta rhei. In: Hinneburg (ed.) LWA Conference Proceedings, pp. 318–323. Martin-Luther-University (2007)
Nelson, E.: Syntax and Semantics (March 2009), http://www.math.princeton.edu/~nelson/papers/s.pdf
Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: Cuellar, J., Liu, Z. (eds.) Software Engineering and Formal Methods (SEFM 2004), pp. 230–239. IEEE Computer Society, Los Alamitos (2004)
Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)
Normann, I.: Theory Morphisms. PhD Thesis, Jacobs University, Germany (2008)
OpenMathHome (March 2007), http://www.openmath.org
Pólya, G.: Mathematics and Plausible Reasoning Volume I: Induction and Analogy in Mathematics. Princeton University Press, Princeton (1969)
Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recommendation (March 2009), http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
Rabe, F.: Representing Logics and Logic Translations. PhD Thesis, Jacobs University, Germany (2008)
Schiller, M., Dietrich, D., Benzmüller, C.: Proof step analysis for proof tutoring – a learning approach to granularity. Teaching Mathematics and Computer Science (in press) (2009)
Scott, W.R.: Group Theory. Dover, New York (1987)
Siekmann, J., Benzmüller, C., Fiedler, A., Meier, A., Normann, I., Pollet, M.: Proof development in OMEGA: The irrationality of square root of 2. In: Kamareddine, F. (ed.) Thirty Five Years of Automating Mathematics, pp. 271–314. Kluwer, Dordrecht (2003)
Siekmann, J., Benzmüller, C., Fiedler, A., Meier, A., Pollet, M.: Proof development with Omega: Sqrt(2) is irrational. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 367–387. Springer, Heidelberg (2002)
Solovay, R.M.: A model of set-theory in which every set of reals is Lebesgue measurable. Annals of Mathematics 38(3), 1–56 (1970)
Gnu TeXMacs (March 2009), http://www.texM.s.org
vdash: A Formal Math Wiki (March 2009), http://www.vdash.org
Weber, T.: Bounded model generation for isabelle/hol. Electronic Notes in Theoretical Computer Science 125(3), 103–116 (2005)
Wenzel, M.: Personal communication to C. Müller, March 7 (2009)
Wenzel, M.: Isabelle/Isar – a generic framework for human-readable proof documents. In: Matuszewski, R., Zalewska, A. (eds.) From Insight to Proof: Festschrift in Honour of Andrzej Trybulec. Studies in Logic, Grammar and Rhetoric, vol. 10(23), pp. 277–298. University of Białystok (2007)
Wenzel, M.T.: Isar – a generic interpretative approach to readable formal proof documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 167–184. Springer, Heidelberg (1999)
Whitehead, A.N., Russell, B.: Principia Mathematica, 2nd edn., vol. I. Cambridge University Press, Cambridge (1910)
Wiedijk, F.: Formal proof – getting started. AMS Notices (11), 1408–1414 (2008)
Winterstein, D., Bundy, A., Gurr, C., Jamnik, M.: An experimental comparison of diagrammatic and algebraic logics. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) Diagrams 2004. LNCS, vol. 2980, pp. 432–434. Springer, Heidelberg (2004)
Young, N.: An Introduction to Hilbert Space. Cambridge University Press, Cambridge (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Calude, C.S., Müller, C. (2009). Formal Proof: Reconciling Correctness and Understanding. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds) Intelligent Computer Mathematics. CICM 2009. Lecture Notes in Computer Science(), vol 5625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02614-0_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-02614-0_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02613-3
Online ISBN: 978-3-642-02614-0
eBook Packages: Computer ScienceComputer Science (R0)