A Hierarchical Model for the Recognition of Deformable Objects | SpringerLink
Skip to main content

A Hierarchical Model for the Recognition of Deformable Objects

  • Conference paper
Computer Vision and Graphics (ICCVG 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5337))

Included in the following conference series:

  • 1165 Accesses

Abstract

This paper proposes a hierarchical model for the recognition of deformable objects. Object categories are modelled by multiple views, views in turn consist of several parts, and parts consist of several features. The main advantage of the proposed model is that its nodes can be tuned with regard to the spatial selectivity. Every node in a category, views or part can thus take on the shape of a simple bag of features or a geometrically selective constellation model including all forms in between. Together with the explicit modelling of multiple views this allows for the modelling of categories with high intra-class variance. Experimental results show a high precision for the recognition of a character from a cartoon data base.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13(2), 111–122 (1981)

    Article  MATH  Google Scholar 

  2. Burge, M., Burger, W.: Learning Visual Ideals. In: Proc. of the 9th ICIAP, Florence, Italy, pp. 316–323 (1997)

    Google Scholar 

  3. Crandall, D.J., Felzenszwalb, P.F., Huttenlocher, D.P.: Spatial Priors for Part-Based Recognition Using Statistical Models. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10–17 (2005)

    Google Scholar 

  4. Disney, W.: Lustiges Taschenbuch. vol. 204, 320, 323, 327, 328, 336, 357, 367, Spezial 13, Enten Edition 7, 20, Sonderband 12, Egmont Ehapa, Berlin, Germany

    Google Scholar 

  5. Fergus, R., Perona, P., Zisserman, A.: A Sparse Object Category Model for Efficient Learning and Complete Recognition. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 443–461. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Fergus, R., Perona, P., Zisserman, A.: Weakly Supervised Scale-Invariant Learning of Models for Visual Recognition. International Journal of Computer Vision 71(3), 273–303 (2007)

    Article  Google Scholar 

  7. Hubel, D.H.: Eye, Brain and Vision. Scientific American Library (1988)

    Google Scholar 

  8. Leibe, B., Schiele, B.: Analyzing Contour and Appearance Based Methods for Object Categorization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2003)

    Google Scholar 

  9. Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W. H. Freeman and Company, New York (1982)

    Google Scholar 

  10. Mikolajczyk, K., Leibe, B., Schiele, B.: Multiple Object Class Detection with a Generative Model. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2006) (June 2006)

    Google Scholar 

  11. Murase, H., Nayar, S.K.: Visual learning and recognition of 3-d objects from appearance. Int. Journal of Computer Vision 14(1), 5–24 (1995)

    Article  Google Scholar 

  12. Ommer, B., Buhmann, J.M.: Object Categorization by Compositional Graphical Models. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 103–113. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Rolls, E.T., Treves, A., Tovee, M.J.: The representational capacity of the distributed encoding of information provided by populations of neurons in primate temporal visual cortex. Experimental Brain Research 114(1), 149–162 (1997)

    Article  Google Scholar 

  14. Schein, S.J., Desimone, R.: Spectral Properties of V4 Neurons in the Macaque. Journal of Neuroscience 10(10), 3369–3389 (1990)

    Google Scholar 

  15. Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In: Proc. of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 994–1000. IEEE Computer Society, San Diego (2005)

    Google Scholar 

  16. Stommel, M., Kuhnert, K.-D.: Appearance based recognition of complex objects by genetic prototype-learning. In: Proc. 13th Int’l Conf. In: Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), Plzen, Czech Republic, January 31–February 4 (2005)

    Google Scholar 

  17. Stommel, M., Kuhnert, K.-D.: A Learning Algorithm for the Appearance-Based Recognition of Complex Objects. World Congress in Computer Science, Computer Engineering, and Applied Computing (WORLDCOMP 2006). In: Proc. The 2006 International Conference on Machine Learning; Models, Technologies & Application (MLMTA 2006), Las Vegas, Nevada, USA (2006)

    Google Scholar 

  18. Tanaka, K.: Inferotemporal cortex and object vision. Annual Reviews of Neuroscience 19, 109–139 (1996)

    Article  Google Scholar 

  19. Trappenberg, T.P., Rolls, E.T., Stringer, S.M.: Effective Size of Receptive Fields of Inferior Temporal Visual Cortex Neurons in Natural Scenes. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14(1), pp. 293–300. MIT Press, Cambridge (2001)

    Google Scholar 

  20. Turk, M., Pentland, A.: Face recognition using eigenfaces. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–591 (1991)

    Google Scholar 

  21. Weber, M., Welling, M., Perona, P.: Unsupervised Learning of Models for Recognition. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 18–32. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stommel, M., Kuhnert, KD. (2009). A Hierarchical Model for the Recognition of Deformable Objects. In: Bolc, L., Kulikowski, J.L., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2008. Lecture Notes in Computer Science, vol 5337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02345-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02345-3_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02344-6

  • Online ISBN: 978-3-642-02345-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics