Two-Stage Neural Network Approach to Precise 24-Hour Load Pattern Prediction | SpringerLink
Skip to main content

Two-Stage Neural Network Approach to Precise 24-Hour Load Pattern Prediction

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5572))

Included in the following conference series:

Abstract

The paper presents the neural network approach to the precise 24-hour load pattern prediction for the next day in the power system. In this approach we use the ensemble of few neural network predictors working in parallel. The predicted series containing 24 values of the load pattern generated by the neural predictors are combined together using principal component analysis. Few principal components form the input vector for the final stage predictor composed of another neural network. The developed system of prediction was tested on the real data of the Polish Power System. The results have been compared to the appropriate values generated by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cottrell, M., Girard, B., Girard, Y., Muller, C., Rousset, P.: Daily electrical power curve: classification and forecasting using a Kohonen map. In: Sandoval, F., Mira, J. (eds.) IWANN 1995. LNCS, vol. 930, pp. 1107–1113. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  2. Diamantras, K., Kung, S.Y.: Principal component neural networks. Wiley, N.Y (1996)

    Google Scholar 

  3. Fidalgo, J.N., Pecas Lopez, J.: Load forecasting performance enhancement when facing anomalous events. IEEE Trans. Power Systems 20, 408–415 (2005)

    Article  Google Scholar 

  4. Gonzalez-Romera, E., Jaramillo-Moran, M.A., Carmona-Fernandez, D.: Monthly electric energy demand forecasting based on trend extraction. IEEE Trans. Power Systems 21, 1946–1953 (2006)

    Article  Google Scholar 

  5. Haykin, S.: Neural networks, a comprehensive foundation. Macmillan, N.Y (2002)

    MATH  Google Scholar 

  6. Hippert, H.S., Pedreira, C.E., Souza, R.C.: Neural networks for short-term load forecasting: a review and evaluation. IEEE Trans. on Power Systems 16, 44–55 (2001)

    Article  Google Scholar 

  7. Kandil, N., Wamkeue, R., Saad, M., Georges, S.: An efficient approach for short term load forecasting using artificial neural networks. Electrical Power and Energy Systems 28, 525–530 (2006)

    Article  Google Scholar 

  8. Kuntcheva, L.: Combining pattern classifiers - methods and algorithms. Wiley, New Jersey (2004)

    Book  Google Scholar 

  9. Mandal, P., Senjyu, T., Urasaki, N., Funabashi, T.: A neural network based several hours ahead electric load forecasting using similar days approach. Electrical Power and Energy Systems 28, 367–373 (2006)

    Article  Google Scholar 

  10. Osowski, S., Siwek, K.: The self-organizing neural network approach to load forecasting in power system. In: Int. Joint Conf. on Neural Networks, Washington, pp. 1345–1348 (1999)

    Google Scholar 

  11. Osowski, S., Siwek, K.: Regularization of neural networks for load forecasting in power system. In: IEE Proc. GTD, vol. 149, pp. 340–345 (2002)

    Google Scholar 

  12. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  13. Sorjamaa, A., Hao, J., Reyhani, N., Li, Y., Lendasse, A.: Methodology for long-term prediction of time series. Neurocomputing 70, 2861–2869 (2007)

    Article  Google Scholar 

  14. Yalcinoz, T., Eminoglu, U.: Short term and medium term power distribution load forecasting by neural networks. Energy Conversion and Management 46, 1393–1405 (2005)

    Article  Google Scholar 

  15. Matlab manual, user’s guide, MathWorks, Natick (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siwek, K., Osowski, S. (2009). Two-Stage Neural Network Approach to Precise 24-Hour Load Pattern Prediction. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds) Hybrid Artificial Intelligence Systems. HAIS 2009. Lecture Notes in Computer Science(), vol 5572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02319-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02319-4_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02318-7

  • Online ISBN: 978-3-642-02319-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics