Computational Agents to Model Knowledge - Theory, and Practice in Visual Surveillance | SpringerLink
Skip to main content

Abstract

In this work the concept of computational agent is located within the methodological framework of levels and domains of description of a calculus in the context of different usual paradigms in Artificial Intelligence (symbolic, situated, connectionist, and hybrid). Emphasis in the computable aspects of agent theory is put, leaving open the possibility to the incorporation of other aspects that are still pure cognitive nomenclature without any computational counterpart of equivalent semantic richness. These ideas are currently being implemented on semi-automatic video-surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agha, G.: Actors: A Model of Concurrent Computing in Distributed Systems. The MIT Press, Cambridge (1986)

    Google Scholar 

  2. Bertier, M., Marin, O., Sens, P.: Performance analysis of a hierarchical failure detector. In: Proceedings of the International Conference on Dependable Systems and Networks, DSN 2003, pp. 635–644 (2003)

    Google Scholar 

  3. Cuena, J., Demazeau, Y., Garcia-Serrano, A., Treur, J.: Knowledge Engineering and Agent Technology. Frontiers in Artificial Intelligence and Applications, vol. 52. IOS Press, Amsterdam (2003)

    MATH  Google Scholar 

  4. Franklin, S., Graesser, A.: Is it an agent, or just a program?: A taxonomy for autonomous agents. In: Jennings, N.R., Wooldridge, M.J., Müller, J.P. (eds.) ECAI-WS 1996 and ATAL 1996. LNCS, vol. 1193, pp. 121–135. Springer, Heidelberg (1997)

    Google Scholar 

  5. Gascueña, J.M., Fernández-Caballero, A.: The INGENIAS methodology for advanced surveillance systems modelling. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4528, pp. 541–550. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Guessoum, Z., Briot, J.P., Marin, O., Hamel, A., Sens, P.: Dynamic and adaptive replication for large-scale reliable multi-agent systems. In: Proceedings of the 1st International Workshop on Software Engineering for Large-Scale Multi-Agent Systems, SELMAS 2002, pp. 26–30 (2002)

    Google Scholar 

  7. Jiang, Y., Xia, Z., Zhong, Y., Zhang, S.: The construction and analysis of agent fault-tolerance model based on pi-calculus. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 591–598. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Dynamic visual attention model in image sequences. Image and Vision Computing 25(5), 597–613 (2007)

    Article  Google Scholar 

  9. López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Visual surveillance by dynamic visual attention method. Pattern Recognition 39(11), 2194–2211 (2006)

    Article  Google Scholar 

  10. Marr, D.: Vision. Freeman, San Francisco (1982)

    Google Scholar 

  11. Martínez, R., Rincón, M., Bachiller, M., Mira, J.: On the correspondence between objects and events for the diagnosis of situations in visual surveillance tasks. Pattern Recognition Letters 29(8), 1117–1135 (2008)

    Article  Google Scholar 

  12. Maturana, H.R.: The organization of the living: A theory of the living organization. International Journal of Man-Machine Studies 7, 313–332 (1975)

    Article  Google Scholar 

  13. McCulloch, W.S.: Embodiments of Mind. The MIT Press, Cambridge (1965)

    MATH  Google Scholar 

  14. Mira, J., Delgado, A.E., Moreno-Diaz, R.: Cooperative processes in cerebral dynamic. Applications of Information and Control Systems 3, 273–280 (1979)

    Google Scholar 

  15. Meyer, B.: Object-Oriented Software Construction. Prentice Hall, Englewood Cliffs (1997)

    MATH  Google Scholar 

  16. Minsky, M.L.: Steps towards Artificial Intelligence. Proceedings of the Institute of Radio Engineers 49, 8–30 (1961)

    MathSciNet  Google Scholar 

  17. Newell, A., Simon, H.A.: Human Problem Solving. Prentice Hall, Englewood Cliffs (1972)

    Google Scholar 

  18. Nunes de Castro, L.: Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman & Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  19. Padgham, L., Zambonelli, F.: AOSE VII / AOSE 2006. LNCS, vol. 4405. Springer, Heidelberg (2007)

    Book  Google Scholar 

  20. Padgham, L., Winikoff, M.: Developing Intelligent Agents Systems: A Practical Guide. John Wiley and Sons, Chichester (2004)

    Book  MATH  Google Scholar 

  21. Pavón, J., Gómez-Sanz, J., Fernández-Caballero, A., Valencia-Jiménez, J.J.: Development of intelligent multi-sensor surveillance systems with agents. Robotics and Autonomous Systems 55(12), 892–903 (2007)

    Article  Google Scholar 

  22. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning, KR 1991, pp. 473–484 (1991)

    Google Scholar 

  23. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  24. Valencia-Jiménez, J.J., Fernández-Caballero, A.: Holonic multi-agent systems to integrate independent multi-sensor platforms in complex surveillance. In: Proceedings of the IEEE International Conference on Advanced Video and Signal based Surveillance, AVSS 2006, p. 49 (2006)

    Google Scholar 

  25. Varela, F.J.: Principles of Biological Autonomy. North-Holland, Amsterdam (1979)

    Google Scholar 

  26. von Neumann, J.: The Computer and the Brain. Yale University Press, New Haven (1958)

    MATH  Google Scholar 

  27. Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. The MIT Press, Cambridge (1999)

    Google Scholar 

  28. Wiener, N.: Cybernetics: Or the Control and Communication in the Animal and the Machine. Wiley, Chichester (1961)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mira, J., Delgado, A.E., Fernández-Caballero, A., Gascueña, J.M., López, M.T. (2009). Computational Agents to Model Knowledge - Theory, and Practice in Visual Surveillance. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds) Methods and Models in Artificial and Natural Computation. A Homage to Professor Mira’s Scientific Legacy. IWINAC 2009. Lecture Notes in Computer Science, vol 5601. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02264-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02264-7_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02263-0

  • Online ISBN: 978-3-642-02264-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics