Abstract
Multi-class labeling is one of the core problems in image analysis. We show how this combinatorial problem can be approximately solved using tools from convex optimization. We suggest a novel functional based on a multidimensional total variation formulation, allowing for a broad range of data terms. Optimization is carried out in the operator splitting framework using Douglas-Rachford Splitting. In this connection, we compare two methods to solve the Rudin-Osher-Fatemi type subproblems and demonstrate the performance of our approach on single- and multichannel images.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. PAMI 23(11), 1222–1239 (2001)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. PAMI 26(9), 1124–1137 (2004)
Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? PAMI 26(2), 147–159 (2004)
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)
Strang, G.: Maximal flow through a domain. Math. Prog. 26, 123–143 (1983)
Chan, T.F., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. J. Appl. Math. 66(5), 1632–1648 (2006)
Pock, T., Schönemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of continuous multi-label problems. In: ECCV, vol. 3, pp. 792–805 (2008)
Ishikawa, H.: Exact optimization for Markov random fields with convex priors. PAMI 25(10), 1333–1336 (2003)
Zach, C., Gallup, D., Frahm, J.M., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: VMV (2008)
Kleinberg, J., Tardos, E.: Approximation algorithms for classification problems with pairwise relationships: Metric labeling and MRFs. In: FOCS, pp. 14–23 (1999)
Ziemer, W.: Weakly Differentiable Functions. Springer, Heidelberg (1989)
Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. Univ. Lect. Series, vol. 22. AMS (2001)
Sapiro, G., Ringach, D.L.: Anisotropic diffusion of multi-valued images with applications to color filtering. Trans. Image Process. 5, 1582–1586 (1996)
Chan, T.F., Shen, J.: Image processing and analysis. SIAM, Philadelphia (2005)
Yang, J., Yin, W., Zhang, Y., Wang, Y.: A fast algorithm for edge-preserving variational multichannel image restoration. Tech. Rep. 08-09, Rice Univ. (2008)
Duval, V., Aujol, J.F., Vese, L.: A projected gradient algorithm for color image decomposition. CMLA Preprint (2008-21) (2008)
Chan, T., Esedoglu, S., Park, F., Yip, A.: Total variation image restoration: Overview and recent developments. In: The Handbook of Mathematical Models in Computer Vision. Springer, Heidelberg (2005)
Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. TR, U. of Heidelberg (2008)
Rockafellar, R., Wets, R.J.B.: Variational Analysis, 2nd edn. Springer, Heidelberg (2004)
Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. of the AMS 82(2), 421–439 (1956)
Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on Numerical Analysis 16(6), 964–979 (1979)
Eckstein, J.: Splitting Methods for Monotone Operators with Application to Parallel Optimization. PhD thesis, MIT (1989)
Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for max. mon. operators. M. Prog. 55, 293–318 (1992)
Michelot, C.: A finite algorithm for finding the projection of a point onto the canonical simplex of ℝn. J. Optim. Theory and Appl. 50(1), 195–200 (1986)
Dobson, D.C., Curtis, Vogel, R.: Iterative methods for total variation denoising. J. Sci. Comput 17, 227–238 (1996)
Chambolle, A.: An algorithm for total variation minimization and applications. JMIV 20, 89–97 (2004)
Chambolle, A.: Total variation minimization and a class of binary MRF models. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 136–152. Springer, Heidelberg (2005)
Aujol, J.F.: Some algorithms for total variation based image restoration. CMLA Preprint (2008-05) (2008)
Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. J. Sci. Comput. 20, 1964–1977 (1999)
Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. SIAM J. Multisc. Model. Sim. 4(4), 1168–1200 (2005)
Bresson, X., Chan, T.: Fast minimization of the vectorial total variation norm and applications to color image processing. Tech. Rep. 07-25, UCLA (2007)
Geman, D., Yang, C.: Nonlinear image recovery with halfquadratic regularization. IEEE Trans. Image Proc. 4(7), 932–946 (1995)
Cohen, L.: Auxiliary variables and two-step iterative algorithms in computer vision problems. JMIV 6(1), 59–83 (1996)
Strang, G.: The discrete cosine transform. SIAM Review 41(1), 135–147 (1999)
Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for Markov random fields. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 16–29. Springer, Heidelberg (2006)
Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. J. Sci. Comput. 28(1), 1–23 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C. (2009). Convex Multi-class Image Labeling by Simplex-Constrained Total Variation. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-02256-2_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02255-5
Online ISBN: 978-3-642-02256-2
eBook Packages: Computer ScienceComputer Science (R0)