Convex Multi-class Image Labeling by Simplex-Constrained Total Variation | SpringerLink
Skip to main content

Convex Multi-class Image Labeling by Simplex-Constrained Total Variation

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

Abstract

Multi-class labeling is one of the core problems in image analysis. We show how this combinatorial problem can be approximately solved using tools from convex optimization. We suggest a novel functional based on a multidimensional total variation formulation, allowing for a broad range of data terms. Optimization is carried out in the operator splitting framework using Douglas-Rachford Splitting. In this connection, we compare two methods to solve the Rudin-Osher-Fatemi type subproblems and demonstrate the performance of our approach on single- and multichannel images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. PAMI 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  2. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. PAMI 26(9), 1124–1137 (2004)

    Article  MATH  Google Scholar 

  3. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? PAMI 26(2), 147–159 (2004)

    Article  MATH  Google Scholar 

  4. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Strang, G.: Maximal flow through a domain. Math. Prog. 26, 123–143 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chan, T.F., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. J. Appl. Math. 66(5), 1632–1648 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Pock, T., Schönemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of continuous multi-label problems. In: ECCV, vol. 3, pp. 792–805 (2008)

    Google Scholar 

  8. Ishikawa, H.: Exact optimization for Markov random fields with convex priors. PAMI 25(10), 1333–1336 (2003)

    Article  Google Scholar 

  9. Zach, C., Gallup, D., Frahm, J.M., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: VMV (2008)

    Google Scholar 

  10. Kleinberg, J., Tardos, E.: Approximation algorithms for classification problems with pairwise relationships: Metric labeling and MRFs. In: FOCS, pp. 14–23 (1999)

    Google Scholar 

  11. Ziemer, W.: Weakly Differentiable Functions. Springer, Heidelberg (1989)

    Book  MATH  Google Scholar 

  12. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. Univ. Lect. Series, vol. 22. AMS (2001)

    Google Scholar 

  13. Sapiro, G., Ringach, D.L.: Anisotropic diffusion of multi-valued images with applications to color filtering. Trans. Image Process. 5, 1582–1586 (1996)

    Article  Google Scholar 

  14. Chan, T.F., Shen, J.: Image processing and analysis. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  15. Yang, J., Yin, W., Zhang, Y., Wang, Y.: A fast algorithm for edge-preserving variational multichannel image restoration. Tech. Rep. 08-09, Rice Univ. (2008)

    Google Scholar 

  16. Duval, V., Aujol, J.F., Vese, L.: A projected gradient algorithm for color image decomposition. CMLA Preprint (2008-21) (2008)

    Google Scholar 

  17. Chan, T., Esedoglu, S., Park, F., Yip, A.: Total variation image restoration: Overview and recent developments. In: The Handbook of Mathematical Models in Computer Vision. Springer, Heidelberg (2005)

    Google Scholar 

  18. Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. TR, U. of Heidelberg (2008)

    Google Scholar 

  19. Rockafellar, R., Wets, R.J.B.: Variational Analysis, 2nd edn. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  20. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. of the AMS 82(2), 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on Numerical Analysis 16(6), 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eckstein, J.: Splitting Methods for Monotone Operators with Application to Parallel Optimization. PhD thesis, MIT (1989)

    Google Scholar 

  23. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for max. mon. operators. M. Prog. 55, 293–318 (1992)

    Article  MATH  Google Scholar 

  24. Michelot, C.: A finite algorithm for finding the projection of a point onto the canonical simplex of ℝn. J. Optim. Theory and Appl. 50(1), 195–200 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dobson, D.C., Curtis, Vogel, R.: Iterative methods for total variation denoising. J. Sci. Comput 17, 227–238 (1996)

    MathSciNet  Google Scholar 

  26. Chambolle, A.: An algorithm for total variation minimization and applications. JMIV 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  27. Chambolle, A.: Total variation minimization and a class of binary MRF models. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 136–152. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  28. Aujol, J.F.: Some algorithms for total variation based image restoration. CMLA Preprint (2008-05) (2008)

    Google Scholar 

  29. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. J. Sci. Comput. 20, 1964–1977 (1999)

    MathSciNet  MATH  Google Scholar 

  30. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. SIAM J. Multisc. Model. Sim. 4(4), 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bresson, X., Chan, T.: Fast minimization of the vectorial total variation norm and applications to color image processing. Tech. Rep. 07-25, UCLA (2007)

    Google Scholar 

  32. Geman, D., Yang, C.: Nonlinear image recovery with halfquadratic regularization. IEEE Trans. Image Proc. 4(7), 932–946 (1995)

    Article  Google Scholar 

  33. Cohen, L.: Auxiliary variables and two-step iterative algorithms in computer vision problems. JMIV 6(1), 59–83 (1996)

    Article  MathSciNet  Google Scholar 

  34. Strang, G.: The discrete cosine transform. SIAM Review 41(1), 135–147 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for Markov random fields. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 16–29. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  36. Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. J. Sci. Comput. 28(1), 1–23 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C. (2009). Convex Multi-class Image Labeling by Simplex-Constrained Total Variation. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics