Abstract
Several constructions in binary linear block codes are also related to matroid theory topics. These constructions rely on a given order in the ground set of the matroid. In this paper we define the Gröbner representation of a binary matroid and we show how it can be used for studying different sets bases, cycles, activity intervals, etc.
Partially funded by “Agencia Española de Cooperación Internacional”, Project A/016959/08.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Borges-Quintana, M., Borges-Trenard, M.A., Fitzpatrick, P., Martínez-Moro, E.: On a Gröbner bases and combinatorics for binary codes. Appl. Algebra Engrg. Comm. Comput. 19-5, 393–411 (2008)
Borges-Quintana, M., Borges-Trenard, M.A., Martínez-Moro, E.: A general framework for applying FGLM techniques to linear codes. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.) AAECC 2006. LNCS, vol. 3857, pp. 76–86. Springer, Heidelberg (2006)
Borges-Quintana, M., Borges-Trenard, M.A., Martínez-Moro, E.: On a Gröbner bases structure associated to linear codes. J. Discrete Math. Sci. Cryptogr. 10-2, 151–191 (2007)
Borges-Quintana, M., Borges-Trenard, M.A., Martínez-Moro, E.: A Gröbner representation of linear codes. In: Advances in Coding Theory and Cryptography, pp. 17–32. World Scientific, Singapore (2007)
Borges-Quintana, M., Borges-Trenard, M.A., Mora, T.: Computing Gröbner Bases by FGLM Techniques in a Noncommutative Settings. J. Symb.Comp. 30, 429–449 (2000)
Cameron, P.: Codes, matroids and trellises, citeseerx.ist.psu.edu/343758.html
Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms (1992)
Esmaeili, M., Gulliver, T., Secord, N.: Trellis complexity of linear block codes via atomic codewords. In: Chouinard, J.-Y., Fortier, P., Gulliver, T.A. (eds.) Information Theory 1995. LNCS, vol. 1133, pp. 130–148. Springer, Heidelberg (1996)
Faugère, J., Gianni, P., Lazard, D., Mora, T.: Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering. J. Symb. Comp. 16(4), 329–344 (1993)
Kschischang, F.R., Sorokine, V.: On the trellis structure of block codes. IEEE Trans. Inform. Theory 41, 1924–1937 (1995)
Mora, T.: Solving Polynomial Equation Systems II: Macaulay’s Paradigm and Gröbner Technology. Cambridge Univ. Press, Cambridge (2005)
Mora, T.: The FGLM Problem and Möller’s Algorithm on Zero-dimensional Ideals. In: [15]
Muder, D.J.: Minimal trellises for block codes. IEEE Trans. Inform. Theory 34(5, part 1), 1049–1053 (1988)
Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (1992)
Sala, M., Mora, T., Perret, L., Sakata, S., Traverso, C. (eds.): Gröbner Bases, Coding, and Cryptography. Springer, Heidelberg (2009) (to appear)
Reinert, B., Madlener, K., Mora, T.: A Note on Nielsen Reduction and Coset Enumeration. In: Proc. ISSAC 1998, pp. 171–178. ACM, New York (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Borges-Quintana, M., Borges-Trenard, M.A., Martínez-Moro, E. (2009). Gröbner Representations of Binary Matroids. In: Bras-Amorós, M., Høholdt, T. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2009. Lecture Notes in Computer Science, vol 5527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02181-7_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-02181-7_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02180-0
Online ISBN: 978-3-642-02181-7
eBook Packages: Computer ScienceComputer Science (R0)