Abstract
A full categorization of irreducible classical Goppa codes of degree 4 and length 9 is given: it is an interesting example in the context of finding an upper bound for the number of Goppa codes which are permutation non-equivalent and irreducible and maximal with fixed parameters q, n and r (\({\mathbb F}_q\) is the field of the Goppa code, the Goppa polynomial has coefficients in \({\mathbb F}_{q^n}\) and its degree is r) using group theory techniques.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, C.-L.: Equivalent irreducible Goppa codes. IEEE Trans. Inf. Theory 24, 766–770 (1978)
Dalla Volta, F., Giorgetti, M., Sala, M.: Permutation equivalent maximal irreducible Goppa codes. Designs, Codes and Cryptography (submitted), http://arxiv.org/abs/0806.1763
Ryan, J.A., Magamba, K.: Equivalent irreducible Goppa codes and the precise number of quintic Goppa codes of length 32. In: AFRICON 2007, September 26-28, pp. 1–4 (2007)
Ryan, J.: Irreducible Goppa codes, Ph.D. Thesis, University College Cork, Cork, Ireland (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Giorgetti, M. (2009). Interesting Examples on Maximal Irreducible Goppa Codes. In: Bras-Amorós, M., Høholdt, T. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2009. Lecture Notes in Computer Science, vol 5527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02181-7_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-02181-7_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02180-0
Online ISBN: 978-3-642-02181-7
eBook Packages: Computer ScienceComputer Science (R0)