Abstract
The aim of this article is twofold. In the first place, we describe a special non-abelian group of block upper triangular matrices, and verify that choosing properly certain parameters, the order of the subgroup generated by one of these matrices can be as large as needed. Secondly, we propose and implement a new key exchange scheme based on these primitives. The security of the proposed system is based on discrete logarithm problem although a non-abelian group of matrices is used. The primary advantadge of this scheme is that no prime numbers are used and the efficiency is guaranteed by the use of a quick exponentiation algorithm for this group of matrices.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agnew, G.B., Mullin, R.C., Vanstone, S.A.: Fast Exponentiation in GF(2n). In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 251–255. Springer, Heidelberg (1988)
Álvarez, R., Ferrández, F., Vicent, J.F., Zamora, A.: Applying quick exponentiation for block upper triangular matrices. Applied Mathematics and Computation 183, 729–737 (2006)
Anshel, I., Anshel, M., Goldfeld, D.: An algebraic method for public-key cryptography. Mathematical Research Letters 6, 287–291 (1999)
Blake, I., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography. London Mathematical Society. Lecture Notes, vol. 265. Cambridge University Press, Cambridge (1999)
Climent, J.J., Gorla, E., Rosenthal, J.: Cryptanalysis of the CFVZ cryptosystem. Advances in Mathematics of Communications (AMC) 1, 1–11 (2006)
Climent, J.J.: Propiedades espectrales de matrices: el índice de matrices triangulares por bloques. La raíz Perron de matrices cocíclicas no negativas. Ph.D Thesis, Valencia. Sapin (1993)
Coppersmith, D., Odlyzko, A., Schroeppel, R.: Discrete logarithms in GF(p). Algorithmica, 1–15 (1986)
Diffie, W., Hellman, M.: New directions In Cryptography. IEEE Trans. Information Theory 22, 644–654 (1976)
Gathen, J.: Efficient and Optimal Exponentiation in Finite Fields. Computational Complexity 1, MR 94a:68061, 360–394 (1991)
Gordon, D.M.: A Survey of Fast Exponentiation Methods. Journal of Algorithms 27, 129–146 (1998)
Hoffman, K., Kunze, R.: Linear Algebra. Prentice-Hall, New Jersey (1971)
Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J.: New Public Key Cryptosystem Unsing Braid Groups. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 166–183. Springer, Heidelberg (2000)
Koblitz, N.: A Course in Number Theory and Cryptography. Springer, Heidelberg (1987)
Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1994)
McCurley, K.: The discret logarithm problem. Cryptology and Computational Number Theory. In: Proceedings of Symposia in Applied Mathematics, vol. 42, pp. 49–74 (1990)
Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Florida (2001)
Menezes, A., Wu, Y.-H.: A polynomial representation for logarithms in GF(q). Acta arithmetica 47, 255–261 (1986)
Menezes, A., Wu, Y.-H.: The Discrete Logarithm Problem in GL(n,q). Ars Combinatoria 47, 22–32 (1997)
Odoni, R.W.K., Varadharajan, V., Sanders, P.W.: Public Key Distribution in Matrix Rings. Electronic Letters 20, 386–387 (1984)
Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Trans. Info. Theory 24, 106–110 (1978)
Shuhong, G., Gathen, J., Panario, D., Shoup, V.: Algorithms for Exponentiation in Finite Fields. Journal of Symbolic Computation 29-6, 879–889 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Álvarez, R., Tortosa, L., Vicent, J., Zamora, A. (2009). A Non-abelian Group Based on Block Upper Triangular Matrices with Cryptographic Applications. In: Bras-Amorós, M., Høholdt, T. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2009. Lecture Notes in Computer Science, vol 5527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02181-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-02181-7_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02180-0
Online ISBN: 978-3-642-02181-7
eBook Packages: Computer ScienceComputer Science (R0)