Multi-spectral Texture Characterisation for Remote Sensing Image Segmentation | SpringerLink
Skip to main content

Multi-spectral Texture Characterisation for Remote Sensing Image Segmentation

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5524))

Included in the following conference series:

Abstract

A multi-spectral texture characterisation model is proposed, the Multi-spectral Local Differences Texem – MLDT, as an affordable approach to be used in multi-spectral images that may contain large number of bands. The MLDT is based on the Texem model. Using an inter-scale post-fusion strategy for image segmentation, framed in a multi-resolution approach, we produce unsupervised multi-spectral image segmentations. Preliminary results on several remote sensing multi-spectral images exhibit a promising performance by the MLDT approach, with further improvements possible to model more complex textures and add some other features, like invariance to spectral intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Plaza, A., Martínez, P., Plaza, J., Pérez, R.: Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations. IEEE Transactions on Geoscience and Remote Sensing 37(6), 1097–1116 (2005)

    Google Scholar 

  2. Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J., Vila-Frances, J., Calpe-Maravilla, J.: Composite kernels for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters (3), 93–97 (2006)

    Article  Google Scholar 

  3. Haindl, M., Havlicek, V.: A Simple multispectral multiresolution Markov texture model. In: International Workshop on Texture Analysis and Synthesis, pp. 63–66 (2002)

    Google Scholar 

  4. Dubuisson-Jolly, M., Gupta, A.: Color and texture fusion: Application to aerial image segmentation and GIS updating. Image and Vision Computing 18, 823–832 (2000)

    Article  Google Scholar 

  5. Palm, C.: Color texture classification by integrative co-occurrence matrices. Pattern Recognition 37(5), 965–976 (2004)

    Article  Google Scholar 

  6. Mirmehdi, M., Petrou, M.: Segmentation of color textures. IEEE Transactions on PatternAnalysis and Machine Intelligence 22(2), 142–159 (2000)

    Article  Google Scholar 

  7. Jojic, N., Frey, B., Kannan, A.: Epitomic analysis of appearance and shape. In: IEEE International Conference on Computer Vision, pp. 34–42 (2003)

    Google Scholar 

  8. Xie, X., Mirmehdi, M.: TEXEMS: Texture exemplars for defect detection on random textured surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(8), 1454–1464 (2007)

    Article  Google Scholar 

  9. Bouman, C.A.: Cluster: An unsupervised algorithm for modelling Gaussian mixtures (April 1997), http://www.ece.purdue.edu/~bouman

  10. Xie, X., Mirmehdi, M.: Colour image segmentation using texems. Annals of the BMVA 2007(6), 1–10 (2007)

    Google Scholar 

  11. Martinez-Uso, A., Pla, F., Sotoca, J.M., Garcia-Sevilla, P.: Clustering-based Hyperspectral Band Selection using Information Measures. IEEE Transactions on Geoscience & Remote Sensing 45(12), 4158–4171 (2007)

    Article  Google Scholar 

  12. Pascual, D., Pla, F., Sánchez, J.S.: Non Parametric Local Density-based Clustering for Multimodal Overlapping Distributions. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 671–678. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pla, F., Gracia, G., García-Sevilla, P., Mirmehdi, M., Xie, X. (2009). Multi-spectral Texture Characterisation for Remote Sensing Image Segmentation. In: Araujo, H., Mendonça, A.M., Pinho, A.J., Torres, M.I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2009. Lecture Notes in Computer Science, vol 5524. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02172-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02172-5_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02171-8

  • Online ISBN: 978-3-642-02172-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics