Abstract
A multi-spectral texture characterisation model is proposed, the Multi-spectral Local Differences Texem – MLDT, as an affordable approach to be used in multi-spectral images that may contain large number of bands. The MLDT is based on the Texem model. Using an inter-scale post-fusion strategy for image segmentation, framed in a multi-resolution approach, we produce unsupervised multi-spectral image segmentations. Preliminary results on several remote sensing multi-spectral images exhibit a promising performance by the MLDT approach, with further improvements possible to model more complex textures and add some other features, like invariance to spectral intensity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Plaza, A., Martínez, P., Plaza, J., Pérez, R.: Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations. IEEE Transactions on Geoscience and Remote Sensing 37(6), 1097–1116 (2005)
Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J., Vila-Frances, J., Calpe-Maravilla, J.: Composite kernels for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters (3), 93–97 (2006)
Haindl, M., Havlicek, V.: A Simple multispectral multiresolution Markov texture model. In: International Workshop on Texture Analysis and Synthesis, pp. 63–66 (2002)
Dubuisson-Jolly, M., Gupta, A.: Color and texture fusion: Application to aerial image segmentation and GIS updating. Image and Vision Computing 18, 823–832 (2000)
Palm, C.: Color texture classification by integrative co-occurrence matrices. Pattern Recognition 37(5), 965–976 (2004)
Mirmehdi, M., Petrou, M.: Segmentation of color textures. IEEE Transactions on PatternAnalysis and Machine Intelligence 22(2), 142–159 (2000)
Jojic, N., Frey, B., Kannan, A.: Epitomic analysis of appearance and shape. In: IEEE International Conference on Computer Vision, pp. 34–42 (2003)
Xie, X., Mirmehdi, M.: TEXEMS: Texture exemplars for defect detection on random textured surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(8), 1454–1464 (2007)
Bouman, C.A.: Cluster: An unsupervised algorithm for modelling Gaussian mixtures (April 1997), http://www.ece.purdue.edu/~bouman
Xie, X., Mirmehdi, M.: Colour image segmentation using texems. Annals of the BMVA 2007(6), 1–10 (2007)
Martinez-Uso, A., Pla, F., Sotoca, J.M., Garcia-Sevilla, P.: Clustering-based Hyperspectral Band Selection using Information Measures. IEEE Transactions on Geoscience & Remote Sensing 45(12), 4158–4171 (2007)
Pascual, D., Pla, F., Sánchez, J.S.: Non Parametric Local Density-based Clustering for Multimodal Overlapping Distributions. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 671–678. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pla, F., Gracia, G., García-Sevilla, P., Mirmehdi, M., Xie, X. (2009). Multi-spectral Texture Characterisation for Remote Sensing Image Segmentation. In: Araujo, H., Mendonça, A.M., Pinho, A.J., Torres, M.I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2009. Lecture Notes in Computer Science, vol 5524. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02172-5_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-02172-5_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02171-8
Online ISBN: 978-3-642-02172-5
eBook Packages: Computer ScienceComputer Science (R0)