Iterative Compression for Exactly Solving NP-Hard Minimization Problems | SpringerLink
Skip to main content

Iterative Compression for Exactly Solving NP-Hard Minimization Problems

  • Chapter
Algorithmics of Large and Complex Networks

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5515))

Abstract

We survey the conceptual framework and several applications of the iterative compression technique introduced in 2004 by Reed, Smith, and Vetta. This technique has proven very useful for achieving a number of recent breakthroughs in the development of fixed-parameter algorithms for NP-hard minimization problems. There is a clear potential for further applications as well as a further development of the technique itself. We describe several algorithmic results based on iterative compression and point out some challenges for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM J. Discrete Math. 3(2), 289–297 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1-3), 89–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the Loop Cutset problem. J. Artificial Intelligence Res. 12, 219–234 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Becker, A., Geiger, D.: Approximation algorithms for the Loop Cutset problem. In: Proc. 10th UAI, pp. 60–68. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  5. Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: Fixed-parameter algorithms for Kemeny scores. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 60–71. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Böckenhauer, H.-J., Hromkovic, J., Mömke, T., Widmayer, P.: On the hardness of reoptimization. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 50–65. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Bodlaender, H.L.: On disjoint cycles. Int. J. Found. Computer Science 5, 59–68 (1994)

    Article  MATH  Google Scholar 

  8. Bodlaender, H.L.: A cubic kernel for feedback vertex set. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 320–331. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for the feedback vertex set problems. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 422–433. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum node multiway cut problem. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 495–506. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. In: Proc. 40th STOC, pp. 177–186. ACM Press, New York (2008)

    Google Scholar 

  12. Dehne, F.K.H.A., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An O(2O(k) n 3) FPT algorithm for the undirected feedback vertex set problem. Theory Comput. Syst. 41(3), 479–492 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dehne, F.K.H.A., Fellows, M.R., Rosamond, F.A., Shaw, P.: Greedy localization, iterative compression, and modeled crown reductions: New FPT techniques, an improved algorithm for set splitting, and a novel 2k kernelization for Vertex Cover. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 271–280. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Dom, M., Guo, J., Hüffner, F., Niedermeier, R., Truß, A.: Fixed-parameter tractability results for feedback set problems in tournaments. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 320–331. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness. Congr. Numer. 87, 161–187 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  17. Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fellows, M.R., Hallett, M.T., Stege, U.: Analogs & duals of the MAST problem for sequences & trees. J. Algorithms 49(1), 192–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, supplement vol. A, pp. 209–259. Kluwer Academic Publishers, Dordrecht (1999)

    Chapter  Google Scholar 

  20. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  21. Fomin, F., Gaspers, S., Kratsch, D., Liedloff, M., Saurabh, S.: Iterative compression and exact algorithms. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 335–346. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Fomin, F.V., Gaspers, S., Pyatkin, A.V.: Finding a minimum feedback vertex set in time O(1.7548n). In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 184–191. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Fulkerson, D.R., Ford Jr., L.R.: Maximal flow through a network. Canad. J. Math. 8, 399–404 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for network problems. SIAM J. Comput. 18(5), 1013–1036 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in directed and node weighted graphs. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 487–498. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  26. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Exact algorithms for clique generation. Theory Comput. Syst. 38(4), 373–392 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Data reduction, exact, and heuristic algorithms for clique cover. In: Proc. 8th ALENEX, pp. 86–94. SIAM, Philadelphia (2006); Journal version to appear under the title Data reduction and exact algorithms for clique cover. ACM J. Exp. Algorithmics

    Google Scholar 

  28. Guillemot, S.: Parameterized complexity and approximability of the SLCS problem. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 115–128. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. System Sci. 72(8), 1386–1396 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hüffner, F.: Algorithm engineering for optimal graph bipartization. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 240–252. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  31. Hüffner, F.: Algorithms and Experiments for Parameterized Approaches to Hard Graph Problems. Ph.D thesis, Institut für Informatik, Friedrich-Schiller-Universität Jena (2007)

    Google Scholar 

  32. Hüffner, F., Betzler, N., Niedermeier, R.: Optimal edge deletions for signed graph balancing. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 297–310. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  33. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 711–722. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  34. Hüffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-parameter algorithms. The Computer Journal 51(1), 7–25 (2008)

    Article  Google Scholar 

  35. Kahng, A.B., Vaya, S., Zelikovsky, A.: New graph bipartizations for double-exposure, bright field alternating phase-shift mask layout. In: Proc. Asia and South Pacific Design Automation Conference, pp. 133–138. ACM Press, New York (2001)

    Google Scholar 

  36. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. J. Algorithms 31(2), 335–354 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Marx, D.: Chordal deletion is fixed-parameter tractable. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 37–48. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  38. Mishra, S., Raman, V., Saurabh, S., Sikdar, S., Subramanian, C.R.: The complexity of finding subgraphs whose matching number equals the vertex cover number. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 268–279. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  39. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  40. Pop, M., Kosack, D.S., Salzberg, S.L.: Hierarchical scaffolding with Bambus. Genome Research 14(1), 149–159 (2004)

    Article  Google Scholar 

  41. Raman, V., Saurabh, S., Sikdar, S.: Efficient exact algorithms through enumerating maximal independent sets and other techniques. Theory Comput. Syst. 41(3), 563–587 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Razgon, I., O’Sullivan, B.: Almost 2-SAT is fixed-parameter tractable. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 551–562. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  43. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Schulz, A.S., Weismantel, R., Ziegler, G.M.: 0/1-integer programming: Optimization and augmentation are equivalent. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 473–483, pp. 473–483. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  45. Zhang, X.-S., Wang, R.-S., Wu, L.-Y., Chen, L.: Models and algorithms for haplotyping problem. Current Bioinformatics 1(1), 104–114 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guo, J., Moser, H., Niedermeier, R. (2009). Iterative Compression for Exactly Solving NP-Hard Minimization Problems. In: Lerner, J., Wagner, D., Zweig, K.A. (eds) Algorithmics of Large and Complex Networks. Lecture Notes in Computer Science, vol 5515. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02094-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02094-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02093-3

  • Online ISBN: 978-3-642-02094-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics