Multi-level Algorithms for Modularity Clustering | SpringerLink
Skip to main content

Multi-level Algorithms for Modularity Clustering

  • Conference paper
Experimental Algorithms (SEA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5526))

Included in the following conference series:

  • 1398 Accesses

Abstract

Modularity is a widely used quality measure for graph clusterings. Its exact maximization is prohibitively expensive for large graphs. Popular heuristics progressively merge clusters starting from singletons (coarsening), and optionally improve the resulting clustering by moving vertices between clusters (refinement). This paper experimentally compares existing and new heuristics of this type with respect to their effectiveness (achieved modularity) and runtime. For coarsening, it turns out that the most widely used criterion for merging clusters (modularity increase) is outperformed by other simple criteria, and that a recent multi-step algorithm is no improvement over simple single-step coarsening for these criteria. For refinement, a new multi-level algorithm produces significantly better clusterings than conventional single-level algorithms. A comparison with published benchmark results and algorithm implementations shows that combinations of coarsening and multi-level refinement are competitive with the best algorithms in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69, 026113 (2004)

    Article  Google Scholar 

  2. Gaertler, M.: Clustering. In: Brandes, U., Erlebach, T. (eds.) Network Analysis: Methodological Foundations. LNCS, vol. 3418, pp. 178–215. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)

    Article  MATH  Google Scholar 

  4. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Transactions on Knowledge and Data Engineering 20(2), 172–188 (2008)

    Article  MATH  Google Scholar 

  5. Agarwal, G., Kempe, D.: Modularity-maximizing graph communities via mathematical programming. The European Physical Journal B 66(3), 409–418 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xu, G., Tsoka, S., Papageorgiou, L.G.: Finding community structures in complex networks using mixed integer optimisation. The European Physical Journal B 60(2), 231–239 (2007)

    Article  MATH  Google Scholar 

  7. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Physical Review E 69, 066133 (2004)

    Article  Google Scholar 

  8. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical Review E 70, 066111 (2004)

    Article  Google Scholar 

  9. Danon, L., Díaz-Guilera, A., Arenas, A.: Effect of size heterogeneity on community identification in complex networks. Journal of Statistical Mechanics: Theory and Experiment, P11010 (2006)

    Google Scholar 

  10. Wakita, K., Tsurumi, T.: Finding community structure in mega-scale social networks. Preprint arXiv:cs/0702048 (2007)

    Google Scholar 

  11. Schuetz, P., Caflisch, A.: Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement. Physical Review E 77, 046112 (2008)

    Article  Google Scholar 

  12. Newman, M.E.J.: Modularity and community structure in networks. Proceedings of the National Academy of Sciences 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  13. Ye, Z., Hu, S., Yu, J.: Adaptive clustering algorithm for community detection in complex networks. Physical Review E 78(4), 046115 (2008)

    Article  MathSciNet  Google Scholar 

  14. Hendrickson, B., Leland, R.W.: A multi-level algorithm for partitioning graphs. In: Proceedings of the ACM/IEEE Supercomputing Conference, SC 1995 (1995)

    Google Scholar 

  15. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Newman, M.E.J.: Analysis of weighted networks. Physical Review E 70, 056131 (2004)

    Article  Google Scholar 

  17. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Physical Review E 74, 036104 (2006)

    Article  MathSciNet  Google Scholar 

  18. Noack, A., Rotta, R.: Multi-level algorithms for modularity clustering. Preprint arXiv:0812.4073 (2008)

    Google Scholar 

  19. Schuetz, P., Caflisch, A.: Multistep greedy algorithm identifies community structure in real-world and computer-generated networks. Physical Review E 78, 026112 (2008)

    Article  Google Scholar 

  20. Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Physical Review E 74, 016110 (2006)

    Article  MathSciNet  Google Scholar 

  21. Noack, A.: Modularity clustering is force-directed layout. Physical Review E 79, 026102 (2009)

    Article  Google Scholar 

  22. Medus, A., Acuña, G., Dorso, C.O.: Detection of community structures in networks via global optimization. Physica A 358(2-4), 593–604 (2005)

    Article  Google Scholar 

  23. Massen, C.P., Doye, J.P.K.: Identifying communities within energy landscapes. Physical Review E 71, 046101 (2005)

    Article  Google Scholar 

  24. Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Physical Review E 72, 027104 (2005)

    Article  Google Scholar 

  25. Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal 49(2), 291–307 (1970)

    Article  MATH  Google Scholar 

  26. Rotta, R.: A multi-level algorithm for modularity graph clustering. Master’s thesis, Brandenburg University of Technology (2008)

    Google Scholar 

  27. Djidjev, H.N.: A scalable multilevel algorithm for graph clustering and community structure detection. In: Aiello, W., Broder, A., Janssen, J., Milios, E.E. (eds.) WAW 2006. LNCS, vol. 4936, pp. 117–128. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 10008 (2008)

    Google Scholar 

  29. Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33, 452–473 (1977)

    Article  Google Scholar 

  30. Pons, P., Latapy, M.: Computing communities in large networks using random walks. Journal of Graph Algorithms and Applications 10(2), 191–218 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pujol, J.M., Béjar, J., Delgado, J.: Clustering algorithm for determining community structure in large networks. Physical Review E 74, 016107 (2006)

    Article  Google Scholar 

  32. Donetti, L., Muñoz, M.A.: Detecting network communities: a new systematic and efficient algorithm. Journal of Statistical Mechanics: Theory and Experiment, 10012 (2004)

    Google Scholar 

  33. Arenas, A., Fernández, A., Gómez, S.: Analysis of the structure of complex networks at different resolution levels. New Journal of Physics 10, 053039 (2008)

    Article  Google Scholar 

  34. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology 54, 396–405 (2003)

    Article  Google Scholar 

  35. Krebs, V.: A network of books about recent US politics sold by the online bookseller amazon.com (2008), http://www.orgnet.com/

  36. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. White, S., Smyth, P.: A spectral clustering approach to finding communities in graphs. In: Proceedings of the 5th SIAM International Conference on Data Mining (SDM 2005), pp. 274–285. SIAM, Philadelphia (2005)

    Chapter  Google Scholar 

  38. Gleiser, P., Danon, L.: Community structure in jazz. Advances in Complex Systems 6(4), 565–573 (2003)

    Article  Google Scholar 

  39. Guimerà, R., Danon, L., Díaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Physical Review E 68, 065103 (2003)

    Article  Google Scholar 

  40. Grossman, J.: The Erdös number project (2007), http://www.oakland.edu/enp/

  41. Boguñá, M., Pastor-Satorras, R., Díaz-Guilera, A., Arenas, A.: Models of social networks based on social distance attachment. Physical Review E 70, 056122 (2004)

    Article  Google Scholar 

  42. Newman, M.E.J.: The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences 98(2), 404–409 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Albert, R., Jeong, H., Barabási, A.L.: Diameter of the World-Wide Web. Nature 401(6749), 130–131 (1999)

    Article  Google Scholar 

  44. Csárdi, G., Nepusz, T.: The igraph software package for complex network research. Inter. Journal Complex Systems 1695 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Noack, A., Rotta, R. (2009). Multi-level Algorithms for Modularity Clustering. In: Vahrenhold, J. (eds) Experimental Algorithms. SEA 2009. Lecture Notes in Computer Science, vol 5526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02011-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02011-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02010-0

  • Online ISBN: 978-3-642-02011-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics