Abstract
Modularity is a widely used quality measure for graph clusterings. Its exact maximization is prohibitively expensive for large graphs. Popular heuristics progressively merge clusters starting from singletons (coarsening), and optionally improve the resulting clustering by moving vertices between clusters (refinement). This paper experimentally compares existing and new heuristics of this type with respect to their effectiveness (achieved modularity) and runtime. For coarsening, it turns out that the most widely used criterion for merging clusters (modularity increase) is outperformed by other simple criteria, and that a recent multi-step algorithm is no improvement over simple single-step coarsening for these criteria. For refinement, a new multi-level algorithm produces significantly better clusterings than conventional single-level algorithms. A comparison with published benchmark results and algorithm implementations shows that combinations of coarsening and multi-level refinement are competitive with the best algorithms in the literature.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69, 026113 (2004)
Gaertler, M.: Clustering. In: Brandes, U., Erlebach, T. (eds.) Network Analysis: Methodological Foundations. LNCS, vol. 3418, pp. 178–215. Springer, Heidelberg (2005)
Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)
Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Transactions on Knowledge and Data Engineering 20(2), 172–188 (2008)
Agarwal, G., Kempe, D.: Modularity-maximizing graph communities via mathematical programming. The European Physical Journal B 66(3), 409–418 (2008)
Xu, G., Tsoka, S., Papageorgiou, L.G.: Finding community structures in complex networks using mixed integer optimisation. The European Physical Journal B 60(2), 231–239 (2007)
Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Physical Review E 69, 066133 (2004)
Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical Review E 70, 066111 (2004)
Danon, L., Díaz-Guilera, A., Arenas, A.: Effect of size heterogeneity on community identification in complex networks. Journal of Statistical Mechanics: Theory and Experiment, P11010 (2006)
Wakita, K., Tsurumi, T.: Finding community structure in mega-scale social networks. Preprint arXiv:cs/0702048 (2007)
Schuetz, P., Caflisch, A.: Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement. Physical Review E 77, 046112 (2008)
Newman, M.E.J.: Modularity and community structure in networks. Proceedings of the National Academy of Sciences 103(23), 8577–8582 (2006)
Ye, Z., Hu, S., Yu, J.: Adaptive clustering algorithm for community detection in complex networks. Physical Review E 78(4), 046115 (2008)
Hendrickson, B., Leland, R.W.: A multi-level algorithm for partitioning graphs. In: Proceedings of the ACM/IEEE Supercomputing Conference, SC 1995 (1995)
Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1998)
Newman, M.E.J.: Analysis of weighted networks. Physical Review E 70, 056131 (2004)
Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Physical Review E 74, 036104 (2006)
Noack, A., Rotta, R.: Multi-level algorithms for modularity clustering. Preprint arXiv:0812.4073 (2008)
Schuetz, P., Caflisch, A.: Multistep greedy algorithm identifies community structure in real-world and computer-generated networks. Physical Review E 78, 026112 (2008)
Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Physical Review E 74, 016110 (2006)
Noack, A.: Modularity clustering is force-directed layout. Physical Review E 79, 026102 (2009)
Medus, A., Acuña, G., Dorso, C.O.: Detection of community structures in networks via global optimization. Physica A 358(2-4), 593–604 (2005)
Massen, C.P., Doye, J.P.K.: Identifying communities within energy landscapes. Physical Review E 71, 046101 (2005)
Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Physical Review E 72, 027104 (2005)
Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal 49(2), 291–307 (1970)
Rotta, R.: A multi-level algorithm for modularity graph clustering. Master’s thesis, Brandenburg University of Technology (2008)
Djidjev, H.N.: A scalable multilevel algorithm for graph clustering and community structure detection. In: Aiello, W., Broder, A., Janssen, J., Milios, E.E. (eds.) WAW 2006. LNCS, vol. 4936, pp. 117–128. Springer, Heidelberg (2008)
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 10008 (2008)
Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33, 452–473 (1977)
Pons, P., Latapy, M.: Computing communities in large networks using random walks. Journal of Graph Algorithms and Applications 10(2), 191–218 (2006)
Pujol, J.M., Béjar, J., Delgado, J.: Clustering algorithm for determining community structure in large networks. Physical Review E 74, 016107 (2006)
Donetti, L., Muñoz, M.A.: Detecting network communities: a new systematic and efficient algorithm. Journal of Statistical Mechanics: Theory and Experiment, 10012 (2004)
Arenas, A., Fernández, A., Gómez, S.: Analysis of the structure of complex networks at different resolution levels. New Journal of Physics 10, 053039 (2008)
Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology 54, 396–405 (2003)
Krebs, V.: A network of books about recent US politics sold by the online bookseller amazon.com (2008), http://www.orgnet.com/
Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99(12), 7821–7826 (2002)
White, S., Smyth, P.: A spectral clustering approach to finding communities in graphs. In: Proceedings of the 5th SIAM International Conference on Data Mining (SDM 2005), pp. 274–285. SIAM, Philadelphia (2005)
Gleiser, P., Danon, L.: Community structure in jazz. Advances in Complex Systems 6(4), 565–573 (2003)
Guimerà, R., Danon, L., Díaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Physical Review E 68, 065103 (2003)
Grossman, J.: The Erdös number project (2007), http://www.oakland.edu/enp/
Boguñá, M., Pastor-Satorras, R., Díaz-Guilera, A., Arenas, A.: Models of social networks based on social distance attachment. Physical Review E 70, 056122 (2004)
Newman, M.E.J.: The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences 98(2), 404–409 (2001)
Albert, R., Jeong, H., Barabási, A.L.: Diameter of the World-Wide Web. Nature 401(6749), 130–131 (1999)
Csárdi, G., Nepusz, T.: The igraph software package for complex network research. Inter. Journal Complex Systems 1695 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Noack, A., Rotta, R. (2009). Multi-level Algorithms for Modularity Clustering. In: Vahrenhold, J. (eds) Experimental Algorithms. SEA 2009. Lecture Notes in Computer Science, vol 5526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02011-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-02011-7_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02010-0
Online ISBN: 978-3-642-02011-7
eBook Packages: Computer ScienceComputer Science (R0)