Univariate Algebraic Kernel and Application to Arrangements | SpringerLink
Skip to main content

Univariate Algebraic Kernel and Application to Arrangements

  • Conference paper
Experimental Algorithms (SEA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5526))

Included in the following conference series:

  • 1038 Accesses

Abstract

We present a cgal-based univariate algebraic kernel, which provides certified real-root isolation of univariate polynomials with integer coefficients and standard functionalities such as basic arithmetic operations, greatest common divisor (gcd) and square-free factorization, as well as comparison and sign evaluations of real algebraic numbers.

We compare our kernel with other comparable kernels, demonstrating the efficiency of our approach. Our experiments are performed on large data sets including polynomials of high degree (up to 2 000) and with very large coefficients (up to 25 000 bits per coefficient).

We also address the problem of computing arrangements of x-monotone polynomial curves. We apply our kernel to this problem and demonstrate its efficiency compared to previous solutions available in cgal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abbott, J.: Quadratic interval refinement for real roots. In: International Symposium on Symbolic and Algebraic Computation (ISSAC), poster presentation (2006)

    Google Scholar 

  2. Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Kettner, L., Mehlhorn, K., Reichel, J., Schmitt, S., Schömer, E., Wolpert, N.: EXACUS: Efficient and Exact Algorithms for Curves and Surfaces. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 155–166. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Berberich, E., Hemmer, M., Karavelas, M., Teillaud, M.: Revision of the interface specification of algebaic kernel. Technical Report ACS-TR-243301-01, ACS European Project (2007)

    Google Scholar 

  4. Cgal, Computational Geometry Algorithms Library, http://www.cgal.org

  5. Collins, G., Johnson, J., Krandick, W.: Interval Arithmetic in Cylindrical Algebraic Decomposition. Journal of Symbolic Computation 34(2), 145–157 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. The Core library, http://cs.nyu.edu/exact/

  7. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  8. Edelman, A., Kostlan, E.: How zeros of a random polynomial are real? Bulletin of American Mathematical Society 32(1), 1–37 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N.: A Descartes Algorithm for Polynomials with Bit-Stream Coefficients. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 138–149. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Emiris, I., Hemmer, M., Karavelas, M., Limbach, S., Mourrain, B., Tsigaridas, E., Zafeirakopoulos, Z.: Cross-benchmarks for univariate algebraic kernels. Technical Report ACS-TR-363602-02, ACS European Project (2008)

    Google Scholar 

  11. Emiris, I.Z., Kakargias, A., Pion, S., Teillaud, M., Tsigaridas, E.P.: Towards and open curved kernel. In: Proc. 20th Annual ACM Symp. on Computational Geometry (SoCG), New York, USA, pp. 438–446 (2004)

    Google Scholar 

  12. Gmp, Gnu multiple precision arithmetic library, http://gmplib.org/

  13. Hemmer, M., Limbach, S.: Benchmarks on a generic univariate algebraic kernel. Technical Report ACS-TR-243306-03, ACS European Project (2006)

    Google Scholar 

  14. Keyser, J., Culver, T., Manocha, D., Krishnan, S.: Efficient and exact manipulation of algebraic points and curves. Computer-Aided Design 32(11), 649–662 (2000)

    Article  MATH  Google Scholar 

  15. Mourrain, B., Pavone, P., Trébuchet, P., Tsigaridas, E.P., Wintz, J.: Synaps, a library for dedicated applications in symbolic numeric computations. In: Stillman, M., Takayama, N., Verschelde, J. (eds.) IMA Volumes in Mathematics and its Applications, pp. 81–110. Springer, New York (2007), http://synaps.inria.fr

    Google Scholar 

  16. Mpfi, multiple precision interval arithmetic library, http://perso.ens-lyon.fr/nathalie.revol/software.html

  17. Mpfr, library for multiple-precision floating-point computations, http://mpfr.org/

  18. Rouillier, F., Zimmermann, Z.: Efficient isolation of polynomial’s real roots. J. of Computational and Applied Mathematics 162(1), 33–50 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rs, a software for real solving of algebraic systems. F. Rouillier, http://fgbrs.lip6.fr

  20. Tsigaridas, E.P., Emiris, I.Z.: On the complexity of real root isolation using Continued Fractions. Theoretical Computer Science 392, 158–173 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tsigaridas, E.P., Emiris, I.Z.: Real algebraic numbers and polynomial systems of small degree. Theoretical Computer Science 409(2), 186–199 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wein, R., Fogel, E.: The new design of CGAL’s arrangement package. Technical report, Tel-Aviv University (2005)

    Google Scholar 

  23. Yap, C.: Fundamental Problems of Algorithmic Algebra. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  24. Yap, C.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., ch. 41, pp. 927–952. Chapman & Hall/CRC, Boca Raton (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lazard, S., Peñaranda, L., Tsigaridas, E. (2009). Univariate Algebraic Kernel and Application to Arrangements. In: Vahrenhold, J. (eds) Experimental Algorithms. SEA 2009. Lecture Notes in Computer Science, vol 5526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02011-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02011-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02010-0

  • Online ISBN: 978-3-642-02011-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics