Abstract
In the search for trinomial σ−LFSR over finite field \(\mathbb{F}_{2^m}\), one type of binary polynomials which are always reducible with an even number of irreducible factors over binary field \(\mathbb{F}_2\) were found. We prove this using the Stickelberger-Swan theorem and present one new of special pentanomials over \(\mathbb{F}_2\) with the same property.
Supported by the National Natural Science Foundation of China (60503011, 90704003), the National High Technology Research and Development Program of China (863 Program) (2006AA01Z425) and the National Basic Research Program of China (937 Program) (2007CB807902).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Golomb, S.W., et al.: Shift Register Sequences. Holden-Day, Inc., San Francisco (1967)
Lidl, R., Niederreiter, H.: Finite Fields, Encyclopedia of Mathematics and its Applications, vol. 20. Cambridge University Press, Cambridge (1983)
Swan, R.G.: Factorization of polynomial over finite fields. Pacific Journal of Mathematics 12, 1099–1106 (1962)
Bluher, A.W.: A Swan-like theorem. Finite Fields and Their Applications 12(1), 128–138 (2006)
Hales, A.W., Newhart, D.W.: Swan’s theorem for binary tetranomials. Finite Fields and Their Applications 12(2), 301–311 (2006)
Hales, A.W., Newhart, D.W.: Irreducibles of tetranomial type. Kluwer International Series in Engineering and Computer Science, vol. 726, pp. 159–168 (2003)
Ahmadi, O., Menezes, A.: Irreducible polynomials of maximum weight. Utilitas Mathematica 72, 111–123 (2007)
Ahmadi, O., Vega, G.: On the Parity of the Number of Irreducible Factors of Self-reciprocal Polynomials over Finite Fields. Finite Fields and Their Applications 14(1), 124–131 (2008)
Zeng, G., Han, W., He, K.: High Efficiency Feedback Shift Register: σ−LFSR. Cryptology ePrint Archive, Report 2007/114 (2007), http://eprint.iacr.org/
Zeng, G., He, K., Han, W.: A Trinomial Type of σ−LFSR Oriented Toward Software Implementation. Science in China Series F-Information Sciences 50(3), 359–372 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zeng, G., Yang, Y., Han, W., Fan, S. (2009). Reducible Polynomial over \(\mathbb{F}_{2}\) Constructed by Trinomial σ−LFSR. In: Yung, M., Liu, P., Lin, D. (eds) Information Security and Cryptology. Inscrypt 2008. Lecture Notes in Computer Science, vol 5487. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01440-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-01440-6_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01439-0
Online ISBN: 978-3-642-01440-6
eBook Packages: Computer ScienceComputer Science (R0)