Modeling Highway Networks with Path-Geographical Transformations | SpringerLink
Skip to main content

Modeling Highway Networks with Path-Geographical Transformations

  • Chapter
Complex Networks

Abstract

A model of highway networks is proposed which is based on the generalization of the concept of geographical networks to incorporate several of the intermediate towns found between two main localities. This model is validated with respect to the US highway network by comparing a large number of topological measurements extracted from that structure with respective measurements obtained from ensembles of networks produced by the proposed model as well as by more traditional theoretical models of complex networks. An optimal multivariate statistical method, namely canonical analysis, is applied in order to reduce the high dimensionality of the measurements space to allow visualization as well as redundancy reduction and enhanced stochastic sampling. Maximum likelihood decision theory is then applied over the reduced measurement space in order to identify the best models. The results corroborate that the currently proposed model allows the best adherence, among all the other considered models, to the original US highway network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. da Fontoura Costa, L., Oliveira Jr, O.N., Travieso, G., Rodrigues, F.A., Villas Boas, P.R., Antiqueira, L., Viana, M.P., da Rocha, L.E.C.: Analyzing and Modeling Real-World Phenomena with Complex Networks: A Survey of Applications (2008) arXiv:0711.3199

    Google Scholar 

  2. Erdős, P., Rényi, A.: On random graphs. Publicationes Mathematicae 6, 290–297 (1959)

    Google Scholar 

  3. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  4. Barabási, A.-L.: The Architecture of Complexity. Control Systems Magazine, IEEE 27(4), 33–42 (2007)

    Article  Google Scholar 

  5. Vázquez, A., Flammini, A., Maritan, A., Vespignani, A.: Modeling of protein interaction networks. Complexus 1(1), 38–44 (2003)

    Article  Google Scholar 

  6. Yook, S.-H., Jeong, H., Barabási, A.-L.: Modeling the Internet’s large-scale topology. Proceedings of the National Academy of Sciences 99(21), 13382–13386 (2002)

    Article  Google Scholar 

  7. Markošová, M.: Network model of human language. Physica A 387(2-3), 661–666 (2008)

    Article  Google Scholar 

  8. da Fontoura Costa, L., Rodrigues, F.A., Travieso, G., Villas Boas, P.R.: Characterization of complex networks: A survey of measurements. Advances in Physics 56(1), 167 (2007)

    Article  Google Scholar 

  9. Albert, R., Albert, I., Nakarado, G.L.: Structural vulnerability of the North American power grid. Physical Review E 69(2), 025103 (2004)

    Article  Google Scholar 

  10. da Fontoura Costa, L., Sporns, O.: Correlating thalamocortical connectivity and activity. Applied Physics Letters 89, 13903 (2006)

    Article  Google Scholar 

  11. Seaton, K.A., Hackett, L.M.: Stations, trains and small-world networks. Physica A 339(3-4), 635–644 (2004)

    Article  MathSciNet  Google Scholar 

  12. Gastner, M.T., Newman, M.E.J.: The spatial structure of networks. The European Physical Journal B-Condensed Matter 49(2), 247–252 (2006)

    Article  Google Scholar 

  13. Latora, V., Marchiori, M.: Is the Boston subway a small-world network? Physica A 314(1-4), 109–113 (2002)

    Article  MATH  Google Scholar 

  14. Ravasz, E., Barabási, A.-L.: Hierarchical organization in complex networks. Physical Review E 67(2), 26112 (2003)

    Article  Google Scholar 

  15. da Fontoura Costa, L.: The Path-Star Transformation and its Effects on Complex Networks (2007) arXiv:0711.1271

    Google Scholar 

  16. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Physics Reports 424(4-5), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  17. Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and correlation properties of the internet. Physical Review Letters 87(25), 258701 (2001)

    Article  Google Scholar 

  18. Newman, M.E.J.: Assortative mixing in networks. Physical Review Letters 89(20), 208701 (2002)

    Article  Google Scholar 

  19. Freeman, L.C.: Centrality in social networks: Conceptual clarification. Social Networks 1, 215–239 (1979)

    Article  Google Scholar 

  20. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America 99(12), 7821–7826 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. da Fontoura Costa, L.: The hierarchical backbone of complex networks. Physical Review Letters 93(9), 98702 (2004)

    Article  Google Scholar 

  22. da Fontoura Costa, L., da Rocha, L.E.C.: A generalized approach to complex networks. The European Physical Journal B-Condensed Matter 50(1), 237–242 (2006)

    Article  Google Scholar 

  23. Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis. Prentice-Hall, Englewood Cliffs (1998)

    Google Scholar 

  24. Campbell, N.A., Atchley, W.R.: The geometry of canonical variate analysis. Syst. Zool 30(3), 268–280 (1981)

    Article  Google Scholar 

  25. da Fontoura Costa, L., Cesar Jr., R.M.: Shape Analysis and Classification: Theory and Practice. CRC Press, Boca Raton (2001)

    Google Scholar 

  26. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience, Hoboken (2000)

    Google Scholar 

  27. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New York (2006)

    Google Scholar 

  28. McLachlan, G.J.: Discriminant analysis and statistical pattern recognition. Wiley, New York (1992)

    Book  Google Scholar 

  29. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  30. Waxman, B.M.: Routing of multipoint connections. IEEE Journal on Selected Areas in Communications 6(9), 1617–1622 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Villas Boas, P.R., Rodrigues, F.A., da Fontoura Costa, L. (2009). Modeling Highway Networks with Path-Geographical Transformations. In: Fortunato, S., Mangioni, G., Menezes, R., Nicosia, V. (eds) Complex Networks. Studies in Computational Intelligence, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01206-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01206-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01205-1

  • Online ISBN: 978-3-642-01206-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics