Sales Forecasting Using an Evolutionary Algorithm Based Radial Basis Function Neural Network | SpringerLink
Skip to main content

Sales Forecasting Using an Evolutionary Algorithm Based Radial Basis Function Neural Network

  • Conference paper
Information Systems: Modeling, Development, and Integration (UNISCON 2009)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 20))

Included in the following conference series:

Abstract

This study intends to present a hybrid evolutionary algorithm for sales forecasting problem. The proposed algorithm is a hybrid of particle swarm optimization (PSO) algorithm and genetic algorithm (GA) for gathering both their merits to improve the learning performance of radial basis function neural network (RBFnn). Model evaluation results of papaya milk sales data show that the proposed algorithm outperforms the sole approach algorithms and traditional Box–Jenkins model in accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akaike, H.: A new look at the statistical model identification. IEEE Trans. on Automat. Control AC. 19, 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Box, G.E.P., Jenkins, G.: Time Series Analysis, Forecasting and Control. Holden-Day, San Francisco (1976)

    MATH  Google Scholar 

  3. Chen, S., Mei, T., Luo, M., Yang, X.: Identification of Nonlinear System Based on a New Hybrid Gradient-Based PSO Algorithm. In: International Conference on Information Acquisition, Jeju City, Korea, pp. 265–268 (2007)

    Google Scholar 

  4. Co, H.C., Boosarawongse, R.: Forecasting Thailand’s rice export: Statistical techniques vs. artificial neural networks. Computers & Industrial Engineering 53, 610–627 (2007)

    Article  Google Scholar 

  5. delaOssa, L., Gamez, J.A., Puetra, J.M.: Learning weighted linguistic fuzzy rules with estimation of distribution algorithms. In: IEEE Congress on Evolutionary Computation, pp. 900–907. Sheraton Vancouver Wall Centre Hotel, Vancouver (2006)

    Google Scholar 

  6. Dickey, D.A., Fuller, W.A.: Likelihood Ration Statistics for Autoregressive Time Series with A Unit Root. Econometrica 49(4), 1057–1072 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Doganis, P., Alexandridis, A., Patrinos, P., Sarimveis, H.: Time series sales forecasting for short shelf-life food products based on artificial neural networks and evolutionary computing. Journal of Food Engineering 75(2), 196–204 (2006)

    Article  Google Scholar 

  8. Dong, H.K.: GA-PSO based vector control of indirect three phase induction motor. Appl. Soft. Comput. 7(2), 601–611 (2007)

    Article  Google Scholar 

  9. Engle, R.F., Yoo, B.: Forecasting and Testing in Cointegrated Systems. Journal of Econometrics 35, 588–589 (1987)

    Article  Google Scholar 

  10. Feng, H.M.: Self-generation RBFNs using evolutional PSO learning. Neurocomputing 70, 241–251 (2006)

    Article  Google Scholar 

  11. Francq, C., Makarova, S., Zakoian, J.M.: A class of stochastic unit-root bilinear processes: Mixing properties and unit-root test. Journal of Economics 142, 312–326 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ghiassi, M., Saidane, H., Zimbra, D.K.: A dynamic artificial neural network model for forecasting time series events. International Journal of Forecasting 21, 341–362 (2005)

    Article  Google Scholar 

  13. Ghiassi, M., Saidane, H.: A dynamic architecture for artificial neural networks. Neurocomputing 70, 397–413 (2005)

    Article  Google Scholar 

  14. Goldberg, D.E.: Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  15. Grimaccia, F., Mussetta, M., Zich, R.E.: Genetical Swarm Optimization: Self-Adaptive Hybrid Evolutionary Algorithm for Electromagnetics. IEEE Transaction on Antennas and Propagation, Part 1 55(3), 781–785 (2007)

    Article  Google Scholar 

  16. Harpham, C., Dawson, C.W.: The effect of different basis functions on a radial basis function network for time series prediction: A comparative study. Neurocomputing 69, 2161–2170 (2006)

    Article  Google Scholar 

  17. Huang, C.M., Wang, F.L.: An RBF Network With OLS and EPSO Algorithms for Real-Time Power Dispatch. IEEE Transactions On Power Systems 22(1), 96–104 (2007)

    Article  Google Scholar 

  18. Juang, C.F.: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man Cybern., Part B: Cybernetics 34(2), 997–1006 (2004)

    Article  Google Scholar 

  19. Kao, Y.T., Zahara, E.: A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Applied Soft Computing 8, 849–857 (2008)

    Article  Google Scholar 

  20. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE Service Center, Perth (1995)

    Google Scholar 

  21. Kmenta, J.: Elements of Econometrics, 2nd edn. Macmillan Publishing Co, New York (1986)

    MATH  Google Scholar 

  22. Lee, Z.J.: A novel hybrid algorithm for function approximation. Expert Systems with Applications 34, 384–390 (2008)

    Article  Google Scholar 

  23. Lu, C.F., Juang, C.F.: Evolutionary fuzzy control of flexible AC transmission system. IEE Proc. Gener. Transm. Distrib. 152(4), 441–448 (2005)

    Article  Google Scholar 

  24. McLeod, A.I., Zhang, Y.: Faster ARMA maximum likelihood estimation. Computational Statistics & Data Analysis 52, 2166–2176 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ong, C.S., Huang, J.J., Tzeng, G.H.: Model identification of ARIMA family using genetic algorithm. Applied Mathematics and Computation 164, 885–912 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ordieres, J.B., Vergara, E.P., Capuz, R.S., Salazar, R.E.: Neural network prediction model for fine particulate matter (PM2.5) on the US-Mexico border in El Paso (Texas) and Ciudad Juarez (Chihuahua). Environmental Modelling and Software 20, 547–559 (2005)

    Article  Google Scholar 

  27. Salajegheh, E., Gholizadeh, S.: Optimum design of structures by an improved genetic algorithm using neural networks. Advances in Engineering Software 36, 757–767 (2005)

    Article  Google Scholar 

  28. Sarimveis, H., Alexandridis, A., Mazarakis, S., Bafas, G.: A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms. Computers and Chemical Engineering 28, 209–217 (2004)

    Article  Google Scholar 

  29. Shi, Y.: Eberhart, R.C.: Parameter Selection in Particle Swarm Optimization. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  30. Tsai, C.H., Chuang, H.T.: Deadzone compensation based on constrained RBF neural network. Journal of the Franklin Institute 374, 361–374 (2004)

    Article  MATH  Google Scholar 

  31. Valenzuela, O., Rojas, I., Rojas, F., Pomares, H., Herrera, L.J., Guillen, A., Marquez, L., Pasadas, M.: Hybridization of intelligent techniques and ARIMA models for time series prediction. Fuzzy Sets and Systems 159, 821–845 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Whigham, P.A., Recknagel, F.: An inductive approach to ecological time series modeling by evolutionary computation. Ecological Modelling 146, 275–287 (2001)

    Article  Google Scholar 

  33. Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175 (2003)

    Article  MATH  Google Scholar 

  34. Zou, H.F., Xia, G.P., Yang, F.T., Wang, H.Y.: An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting. Neurocomputing 70, 2913–2923 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuo, R.J., Hu, TL., Chen, ZY. (2009). Sales Forecasting Using an Evolutionary Algorithm Based Radial Basis Function Neural Network. In: Yang, J., Ginige, A., Mayr, H.C., Kutsche, RD. (eds) Information Systems: Modeling, Development, and Integration. UNISCON 2009. Lecture Notes in Business Information Processing, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01112-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01112-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01111-5

  • Online ISBN: 978-3-642-01112-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics